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Postnatal genomic regulation significantly influences tis-
sue and organ maturation but is under-studied relative to ex-
isting genomic catalogs of adult tissues or prenatal develop-
ment in mouse. The ENCODE4 consortium generated the first
comprehensive single-nucleus resource of postnatal regulatory
events across a diverse set of mouse tissues. The collection
spans seven postnatal time points, mirroring human develop-
ment from childhood to adulthood, and encompasses five core
tissues. We identified 30 cell types, further subdivided into 69
subtypes and cell states across adrenal gland, left cerebral cor-
tex, hippocampus, heart, and gastrocnemius muscle. Our anno-
tations cover both known and novel cell differentiation dynam-
ics ranging from early hippocampal neurogenesis to a new sex-
specific adrenal gland population during puberty. We used an
ensemble Latent Dirichlet Allocation strategy with a curated vo-
cabulary of 2,701 regulatory genes to identify regulatory "top-
ics," each of which is a gene vector, linked to cell type differ-
entiation, subtype specialization, and transitions between cell
states. We find recurrent regulatory topics in tissue-resident
macrophages, neural cell types, endothelial cells across multi-
ple tissues, and cycling cells of the adrenal gland and heart.
Cell-type-specific topics are enriched in transcription factors
and microRNA host genes, while chromatin regulators domi-
nate mitosis topics. Corresponding chromatin accessibility data
reveal dynamic and sex-specific regulatory elements, with en-
riched motifs matching transcription factors in regulatory top-
ics. Together, these analyses identify both tissue-specific and
common regulatory programs in postnatal development across
multiple tissues through the lens of the factors regulating tran-
scription.
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INTRODUCTION
Mammalian postnatal development is marked by changes in
a wide range of biological processes that are coordinated
within and between tissues to achieve adult form and func-
tion. In both humans and mice, examples include muscu-
loskeletal growth and innervation for locomotion, the neu-
roendocrine transition at puberty with its sex-specific growth
and maturation of both reproductive and non-reproductive
tissues, and postnatal brain development necessary for cog-
nition, social behavior and sensory functions. Cell type spe-
cializations and cell state transitions underlie these biolog-
ical processes1,2. Cell types maintain a stable, heritable

identity, defined by shared characteristics such as molecu-
lar markers, morphology, location, and functional properties.
In contrast, cell states represent dynamic variations within a
cell type, responding to environmental cues, developmental
stages, or physiological changes. These variations involve
shifts in gene or protein expression and epigenetic modifica-
tions without altering the fundamental cell type3,4. For ex-
ample, postnatal growth and maturation of skeletal muscle
occurs through myofiber growth that includes the addition of
new nuclei from differentiating progenitor cells and activity-
influenced programming of nuclei within the multinucleate
myofibers. These processes lead to distinct type 1 and type 2
fibers with specific contractile properties2,5–7. While myonu-
clei within muscle cells reflect stable skeletal muscle iden-
tity, exercise training can induce cell state transitions between
type 1 and type 2 fibers2. To better understand and eventually
engineer cell types and transitions between cell states, a first
step is the uniform characterization of molecular intermedi-
ates such as gene expression and chromatin accessibility at
the single-cell level.

Existing single-cell and single-nucleus catalogs primar-
ily capture limited timepoints, focusing on either prenatal de-
velopment or aging adults. The Tabula Muris Consortium, a
widely used resource, recently captured over 350,000 cells
in 6 age groups and 23 tissues and organs8, building on
their previous Tabula Muris catalog of 100,000 cells from
20 organs and tissues using single-cell RNA-seq (scRNA-
seq)9. The Tabula Muris Senis focused on 1- to 30-month-
old mice and identified 155 cell types, averaging around 800
cells per tissue8. Comparative analysis of gene expression
across cell types from 3, 18, and 24-month-old mice sug-
gested that certain cell types such as microglia exhibit an
intermediate cell state before transitioning to an aged tran-
scriptional profile8. In a focused approach, the systematic
dissection of regions in the adult mouse cortex and hippocam-
pus of the Allen Brain Atlas followed by scRNA-seq of 1.3
million cells has produced a comprehensive cell type taxon-
omy that aligns with the spatial arrangement of the brain10.
Although 42 unique subclasses of predominantly GABAer-
gic and glutamatergic neurons were identified, the annota-
tion lacks expected mouse adult stem cells in the brain such
as oligodendrocyte precursor cells and neuronal progenitor
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cells. To provide insights into mouse prenatal development,
the ENCODE3 mouse embryo project profiled 12 whole tis-
sues from embryonic day 10.5 to birth using bulk RNA-seq,
as well as at the single-nucleus level in forelimb11. This pre-
natal timecourse of 91,557 total nuclei and 25 cell types re-
vealed dynamic changes in cell type composition and emer-
gence of multiple lineages during skeletal myogenesis in the
mouse forelimb. In contrast, our snRNA-seq study spans five
core tissues from just after birth to late adulthood at compa-
rable depth to the forelimb time course, pinpointing 99 dis-
tinct cell types and states. Our dataset includes an average of
around 87,000 nuclei per tissue across 7 timepoints, incorpo-
rating 10x Multiome nuclei at two key timepoints.

An ongoing challenge in single-cell resolved transcrip-
tome analysis is to identify and associate groups of genes
with meaningful traits. When traits such as sex and age are
defined in the metadata, differential expression analysis facil-
itates the direct comparison of genes enriched in one group
compared to another. However, single-cell RNA sequenc-
ing notoriously reveals novel cell types and states without
clear prior definitions. In such cases, identifying genes as-
sociated with these populations presents a significant chal-
lenge. While co-expression network analysis has been widely
adopted for grouping genes into modules without predefined
annotations12–14, it restricts gene membership to a single
module. This is problematic because many regulatory genes
that define cell type (e.g. transcription factors or cell sig-
naling receptors and transducers) are commonly used recur-
rently, albeit in differing combinations, across cell types and
states. An approach that avoids this limitation starts by iden-
tifying ‘cellular programs’, which are distinct sets of genes
expressed at specific ratios to one another that can be repre-
sented as a vector of weights. A gene can belong to more
than one program with different weights or to no program at
all. Once the programs are defined, each cell can be scored
as expressing a linear combination of the programs. These
methods trace their origin to text machine learning used to
identify document ‘topics’, so we refer to cellular programs
and topics interchangeably. A widely used generative method
for topic modeling called Latent Dirichlet Allocation (LDA)
can be applied to gene expression data. LDA was originally
introduced for population genetics15 and then in natural lan-
guage processing using machine learning16. More recently,
LDA has been repurposed for single-cell RNA-seq to model
gene expression by considering genes as words, cells as doc-
uments, and latent biological processes as topics17,18. The
mixed membership flexibility of LDA aligns with biological
reality, where a gene may be repurposed in multiple cellu-
lar programs. Analyzing gene weights between topics, which
are vectors, facilitates the comparison of attributes and phe-
notypes associated with a topic, such as dynamic cell types
and states, in addition to age and sex.

The core ENCODE4 mouse time course captures post-
natal development at key timepoints across cerebral cortex,
hippocampus, heart, skeletal muscle, and adrenal glands,
encompassing 436,440 total nuclei. We apply LDA us-
ing Topyfic with a curated vocabulary of 2,701 regulatory

mouse genes19. We recover 82 topics associated with 45 cell
types and states including adult stem cells, tissue-resident
macrophages, and general proliferation. Using this specific
vocabulary allows us to capture cellular programs controlled
by transcription factors (TFs) as well as other transcriptional
and chromatin regulators such as coactivators, microRNAs,
and histone modifiers, and compare them across diverse tis-
sues. Finally, corresponding chromatin accessibility from
10x Multiome at two timepoints ties TFs within our regu-
latory topics to age-specific and sex-specific cell type- and
state-specific regulatory element activity.

Results
The ENCODE4 mouse single-nucleus RNA dataset. For
the final phase of the ENCODE Consortium, we compre-
hensively map the mouse polyadenylated RNA transcriptome
at the single-nucleus level across 5 coordinated tissues at 7
timepoints in B6/CAST F1 hybrid mice, spanning from post-
natal day (PND) 4 to late adulthood (18-20 months) using
the Parse Biosciences combinatorial barcoding platform20,21

(Fig. 1a). Complementary genome-wide datasets, including
bulk short-read RNA-seq, long-read RNA-seq, microRNA-
seq, and chromatin accessibility are also available for match-
ing samples at some or all timepoints (Fig. 1b). Both
polyadenylated RNA and chromatin accessibility were mea-
sured in the same single nuclei across all five tissues at PND
14 and 2-month timepoints using the 10x Multiome plat-
form22. Notably, this mouse time course mirrors the majority
of the human postnatal lifespan, capturing key developmen-
tal stages and biological milestones: opening eyes and au-
ditory development, ongoing neurogenesis, synaptogenesis,
and myelination especially in the first month of life, adapta-
tion to solid food and social signals after weaning, puberty
and sexual maturation by 2 months, and conclusion of the
reproductive lifespan by late adulthood.

We recovered 83,467 adrenal gland nuclei, 112,118 left
cerebral cortex nuclei, 78,168 hippocampus nuclei, 92,808
heart nuclei, and 69,879 skeletal muscle nuclei, collectively
expressing 47,707 genes (including protein coding, pseudo-
gene, lncRNA, or microRNA gene biotypes). We annotated
each tissue separately for a combined total of 188 clusters, 69
subtypes and states, and 30 major cell types (Fig. S1, S2, S3,
S4, S5, Methods). Cells within tissues were clustered, and
each cluster was annotated using established marker genes,
expert consultations, cluster marker gene identification, liter-
ature review, and label transfer from reference datasets where
applicable10,23–25(Methods). Our cell type annotations re-
port three hierarchical levels: ‘general cell types’ (e.g. neu-
ron), ‘cell types’ (e.g. ‘GABAergic neurons’), and ‘subtypes’
(e.g. ‘Pvalb+’). Every cluster was assigned a single sub-
type, with larger subtypes spanning multiple Louvain clus-
ters. Cell states were tracked at the subtype level. Evaluation
of the number of unique molecular identifier (UMI) counts
and genes across cell types reveals reproducible patterns
across tissues. Neural cell types such as neurons and adrenal
medulla chromaffin cells consistently have more UMIs, and
therefore a larger number of detected genes, compared to
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other cell types such as endothelial and immune cells regard-
less of the total number of nuclei within each respective cell
type (Fig. 1c).

Sex specific layers expand in the adrenal zona fasci-
culata during puberty before shrinking in late adult-
hood. Previous studies in B6J mouse adrenal gland charac-
terized the X-zone, a mouse-specific cortical layer situated
between the central medulla and the encasing zona fascicu-
lata (ZF) in both male and female mice1. The mouse X-zone
and the human fetal zone are both transient cortical layers
originating from the fetal stage of development1,26. The hu-
man fetal zone disappears rapidly after birth, along with a
decrease in steroid secretion, but is functionally similar to
the human-specific zona reticularis in adults26. The mouse
X-zone becomes detectable by PND 8 and fully emerges as
a distinguishable layer by PND 141. In female mice, this
layer persists for several weeks during puberty until begin-
ning to regress by PND 32 at the earliest, continuing regres-
sion during adulthood. During the first pregnancy, the en-
tire X-zone disappears, while in non-pregnant mice, it under-
goes gradual regression before disappearing between 3 and 7
months1. In male mice, the X-zone recedes entirely before
PND 401. While the human zona reticularis continues to pro-
duce androgens at lower levels after birth, increasing during
puberty, mice adrenals lack expression of Cyp17a1 and thus
do not secrete androgens27. Instead, the X-zone is character-
ized by the expression of 20-alpha-hydroxysteroid dehydro-
genase (Akr1c18), which has been shown to be induced by
estrogen and downregulated by testosterone1. Additionally,
Pik3c2g, a phosphoinositide 3-kinase involved in cell pro-
liferation, survival, and metabolism is an X-zone marker1.
Furthermore, thyroid nuclear hormone receptor beta (Thrb)
shares X-zone-specific expression with Akr1c18. Despite the
specificity of these markers, corresponding knockout mouse
models lack any X-zone phenotype1. Sex-related factors and
other molecules involved in the formation, maintenance, and
regression of the X-zone reportedly have no specific expres-
sion in the X-zone. Thus, the function of the X-zone remains
unclear despite the steroidogenic activity of the fetal adrenal
cortex from which it originates.

We identify in males the X-zone counterpart, a large
cluster of 8,104 male-specific ZF nuclei that emerges from
PND 25 to PND 36 and also regresses in later adulthood (Fig.
1d, S1). Male nuclei make up 95% of the clusters we anno-
tate as male-only ZF, while female nuclei make up 86% of
X-zone clusters (4,505 nuclei). We find 303 differentially
expressed genes with adjusted p-value < 0.01 and log2 fold
change (LFC) > 1 upregulated in females compared to males
in the X-zone and male-specific ZF, including Xist and Tsix
as well as X-zone marker Pik3c2g (Methods). Akr1c18 is
not significantly upregulated, but still displays X-zone spe-
cific expression (Fig. S1). Ten of the genes upregulated in
females are TFs, including Thrb, Runx2, Irf8, and Nr3c1.
In males compared to females within sex-specific clusters,
666 genes are differentially expressed with adjusted p-value
< 0.01 and LFC > 1, including Y-chromosome linked Uty
and 35 TFs including Esrrg and Hhex. Considering these

characteristics such as nucleus count, sex specificity, differ-
entially expressed genes, and dynamics mirroring the X-zone
in females, we designated the male ZF as a distinct subtype
within the broader zona fasciculata in males and females.

Postnatal neurogenesis and glial maturation in the
brain. The hippocampal dentate gyrus (DG) is one of the few
brain regions that exhibits postnatal neurogenesis across sev-
eral mammalian species28–30. In mice and rats, the initial
month of postnatal development marks a crucial transitional
phase. The most significant maturation shift in the gran-
ule cell population occurs between PND 7 and 1430. Dur-
ing this period, neuronal progenitor cells (NPCs) expressing
doublecortin (Dcx) become localized to the innermost region
of the granule cell layer, signifying the establishment of the
subgranular zone30. Adult neurogenesis occurs in this spe-
cialized niche, from which NPCs eventually migrate to the
overlying granule cell layer and become integrated in hip-
pocampal circuitry28. Our data support this narrative, show-
ing that 73% of DG nuclei from PND 10 and PND 14 belong
to separate “early DG” clusters whereas 92% of PND 25 and
later DG nuclei fall into mature “DG” clusters. Pseudotime
ordering from a starting node of cycling nuclei is consistent
with real time, distinguishing PND 10 and PND 14 from later
timepoints (Methods). Our findings suggest that in later time-
points, the predominant DG cell population is composed of
mature Calb1+ granule cells; however, approximately a quar-
ter of all our immature Dcx+ early DG cells persist into late
adulthood (Fig. 1, S3).

Glial maturation is also captured in both the hippocam-
pus and cerebral cortex as a differentiation trajectory from
oligodendrocyte precursor cells (OPCs) made up of predom-
inantly early timepoints, though they are present throughout
adulthood at lower proportions, to myelin-forming oligoden-
drocytes (MFOL), to mature oligodendrocytes (MOL) (Fig.
1d, S2, S3). Characterized by the expression of proteogly-
can neuron-glial antigen Cspg431, homeodomain transcrip-
tion factor Nkx2-231, and mitogen Pdgfra32, OPCs constitute
a highly dynamic and proliferative group of progenitors (Fig.
S2, S3). In addition to the primary role of OPCs generating
oligodendrocytes in adulthood, OPCs contribute to adaptive
myelination and the capacity to regenerate myelin in response
to injury or disease32, as well as communicate widely with
many of the neural cell types33.

Cycling and perinatal populations in early postnatal
stages of cardiac and skeletal myonuclei. Significant
postnatal development occurs in both cardiac and skeletal
muscle. In heart, growth is categorized into three phases
after birth: hyperplasia until PND 4, rapid hypertrophy be-
tween PND 5 and 15, and slow hypertrophy from PND 15
onward34. In our data, proliferating cardiomyocytes marked
by expression of Top2a and Mki67 diminish by PND 10, in-
dicating that the first wave of growth is mainly due to cellular
division (Fig. 1d). Clustering of ventricular cardiomyocyte
nuclei revealed a spectrum of differentiation from infant, ju-
venile, and adult stages. We find 488 TFs differentially ex-
pressed (p. adj < 0.01, |LFC| > 1) between two or more
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Figure 1. Overview of the ENCODE4 mouse dataset of postnatal development. a, Samples from 5 coordinated B6/CAST F1 hybrid mouse tissues were collected at 7
key timepoints from postnatal day 4 to 18-20 months (excluding hippocampus, which was collected from PND 10 onwards). b, Overview of the sampled tissues, timepoints,
and assays from each tissue in the ENCODE mouse dataset. Most assays have successful experiments in 4 replicates, 2 males and 2 females, per timepoint. 10x Multiome
experiments were selectively performed on PND 14 and 2 month timepoints. c, Comparison of gene and UMI counts in cell types across all five tissues, with point sizes
reflecting the number of nuclei in each cell type within its respective tissue. In common brain cell types, cerebral cortex data points are represented by squares. d, Dynamics
of subtype composition across postnatal development in all five tissues. Highlighted subtypes are shown in color, while all others are represented in shades of grey (see Fig.
S1, S2, S3, S4, S5 full-color versions).

timepoints in non-cycling ventricular cardiomyocytes, such
as genes continually upregulated across postnatal develop-
ment such as Foxo3 and retinoid X receptor gamma (Rxrg)
(Fig. S4, Methods). Several studies have implicated Foxo3 as
a transcriptional regulator of cardiac hypertrophy by inhibit-
ing cardiomyocyte growth and promoting autophagy35,36,
potentially responsible in part for the decreased rate of hy-
pertrophy after PND 14. In the mouse embryo, retinoic acid
(RA) signaling establishes polarity and promotes the ven-
tricular phenotype in developing cardiomyocytes37, therefore
Rxrg may also be important in maintaining normal ventricu-
lar phenotype in the postnatal state. Cardiomyocyte mark-
ers such as Gata4 and Mef2 family genes, well-known tran-
scriptional regulators of cardiac genes in infant, juvenile, and
adult cardiomyocytes38–42 are expressed throughout devel-
opment, highlighting the strong regulatory signature of car-
diomyocytes at all ages.

As in the brain, skeletal muscle contains adult stem

cells, known as satellite cells, that continually replenish my-
onuclei throughout development and adulthood. As muscles
grow, quiescent satellite cells characterized by expression
of Pax7 are activated to become proliferating myoblasts43.
Post-mitotic myoblasts align and fuse with each other to form
multinucleated myotubes, expressing myogenic regulatory
factors (MRFs) including Myf5, Myod1, and Myog44,45. A
portion of satellite cells follows an alternative lineage, where
they remain unfused and undifferentiated to renew the stem
cell pool44,45. Myotubes develop further, undergoing struc-
tural organization to become mature myofibers with the abil-
ity to perform coordinated contraction and relaxation. Ma-
ture skeletal muscle fiber types are identified based on the
expression of distinct myosin heavy chain proteins. Myh7
serves as a marker for slow-twitch type 1 fibers, while Myh2,
Myh4, and Myh1 are specific to fast-twitch type 2 fibers (2A,
2B, and 2X, respectively)6. Additionally, Myh3 has classi-
cally been linked to embryonic fibers, and Myh8 to perinatal
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fibers46. The gastrocnemius, or calf muscle, extends from
two heads attached to the femur and in adults is primarily
composed of fast-twitch type 2B fibers which run towards
the Achilles tendon47. However, fiber type alone provides
only a partial understanding of muscle heterogeneity, as the
weight of this muscle is sexually dimorphic, with male gas-
trocnemius weighing 29% more on average than female gas-
trocnemius at matching timepoints. In our dataset, perinatal
myonuclei constitute the majority of myonuclei shortly after
birth at PND 4. By PND 10, type 1 myonuclei contribute sig-
nificantly to the total myonuclei before being surpassed by
type 2 fibers, particularly type 2B. However, traces of type 1,
as well as type 2A and 2X, persist into adulthood (Fig. 1d,
S5). Among 47 single-nucleus clusters, 6 exhibit a notable
difference in proportion between males and females, with 5
myonuclei clusters and 1 fibro-adipogenic progenitor clus-
ter showing a difference exceeding 1 standard deviation from
the mean (Fig. S5). In addition to tissue-specific cell types,
we consistently detect common cell types such as endothelial
and immune cells across all our vascularized tissues, main-
taining relatively stable proportions. However, their rela-
tive proportions in the overall tissue composition varies, with
heart tissue having the highest overall counts of endothelial
and immune cells (Fig. S1, S2, S3, S4, S5). In summary, our
time course effectively captures dynamics of cell types and
cell states during postnatal development.

Topics modeling identifies cellular programs with a
core set of regulatory genes. Many genes serve as mark-
ers for distinct cell types and states. However, we hypoth-
esize that cellular programs are fundamentally constructed
from a core set of genes, including transcription factors
(TFs), microRNAs, and chromatin regulators. While a cel-
lular program often controls expression of protein-coding
markers that may not be regulators themselves, its core set
of regulatory genes governs cell type and state. To study
specification of cell types, such as cardiomyocytes, endothe-
lial cells, and microglia, and transitions between cell states,
such as transient adrenal cortex zones, granule cell stages,
and muscle fiber types, we applied Latent Dirichlet Alloca-
tion (LDA) to our annotated snRNA-seq data in each tissue
using the Topyfic analysis package19. LDA is a Bayesian
model that learns a limited set of hidden topics that can gen-
erate the underlying training data16. In the context of single-
cell RNA-seq, LDA groups genes into topics and assigns
them numerical scores or weights based on their relevance
to the topic18,19. By examining the expression patterns of
these weighted genes, LDA assigns a participation score to
each cell for each topic, ranging from 0 to 119. A participa-
tion score of 1 indicates that a cell’s gene expression profile
perfectly aligns with the genes associated with that topic19.
However, it is rare for a cell to participate in just one topic,
as numerous cellular processes are affected by regulatory net-
works48. Through the analysis of gene weights, LDA enables
the comparison of latent traits associated with topics, offering
insights into dynamic cell types and states. Topyfic performs
LDA 100 times on a normalized49 genes-by-cells matrix and
determines consensus topics by clustering all 100 runs19,50.

The resulting set of topics represents expression patterns in
regulatory genes that define each single cell. These topics can
be conceptualized as vectors in gene space, with each weight
representing the value in each gene, or dimension. This nu-
anced approach contrasts with a binary set of marker genes,
which merely denotes presence or absence, failing to cap-
ture the idea that genes may have multiple roles in different
contexts51,52. Overall, the topics approach acknowledges the
complexity of cellular programs, recognizing that cells likely
participate in multiple programs simultaneously, and under-
scores the diverse roles that genes may play across various
functional contexts.

Our approach to identifying cellular programs involves
focusing the LDA vocabulary on genes that we categorize as
regulatory. TFs are master regulators of the transcriptome
and form the core of cellular programs and gene regulatory
networks due to their broad impact on target genes53. Despite
their significance, TFs exhibit a wide range of expression pat-
terns across different cell types, often being overshadowed by
the expression patterns of their target genes54. In addition to
TFs, genes were selected with GO term annotations that im-
pact transcriptional and chromatin regulation such as chro-
matin binding genes, transcription regulators, chromatin or-
ganizing genes, host genes representing microRNAs, histone
modifying genes (acetyltransferases, deacetylases, methyl-
transferases, and demethylases), and TBP-associated factors
as well as members of the Mediator complex (TAF-MED)
(Methods). Bulk RNA-seq measurements of these genes by
regulatory biotype reveals most variation in TF detection at
> 1 TPM in at least one bulk sample across tissues (Fig. 2a).
Out of 1,357 known TFs in the mouse genome, 1,104 (75%)
are detected in one or more tissues, with most in adrenal
gland, followed by gastrocnemius and heart, then cortex and
hippocampus. Other gene biotypes such as chromatin bind-
ing genes, chromatin organizers, and transcription regulators
are similarly detected across all tissues (Fig. 2b, c, d). Of the
smallest categories (microRNA host genes, TAF-MED, and
histone modifiers, Fig. 2e, f, g), the same pattern of adrenal
gland, gastrocnemius, heart, and brain regions appears again
in the microRNA host gene category, most likely due to the
tissue specificity of microRNA expression? . In summary,
topics modeling using a curated vocabulary approach aims to
extract impactful cellular programs and allows for character-
ization of regulatory gene biotypes.

Regulatory gene expression is sufficient to define cell
types and cell states. To identify topics specific to each
cell type within a tissue, we applied Topyfic on each tis-
sue separately, incorporating batch effect correction between
snRNA-seq barcoding platforms19,55. Selecting the appro-
priate number of topics, denoted as k, is a crucial aspect of
topic modeling. Topyfic tries different k within the range of
5 to 35 for each tissue using 100 random LDA runs per k and
clusters the resulting topic clusters. If starting with a k that is
too small, there will be more topic clusters than the starting
number k, whereas if k is too big, it will result in fewer topic
clusters than the starting k. The optimal k is the one that gives
as many topic clusters as the starting k 19. This fine-tuning led
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Figure 2. Characterization of hippocampus topics in annotated subtypes. a, Number of transcription factors detected at > 1 TPM in bulk RNA-seq data in each tissue.
Sixth column reports the union of TFs in all tissues, and the last column reports the total number of TFs in our regulatory gene set. b, Number of chromatin binding genes, c,
chromatin organizing genes, d, transcription regulators, e, host genes representing microRNAs, f, histone modifying genes, and g, TBP-associated factors and members of
the Mediator complex detected in bulk RNA-seq data. h, Topic-trait relationship heatmap between 14 hippocampus topics and 10 cell types (23 subtypes). i, Proportion of
topics in OPC (oligodendrocyte precursor), MFOL (myelin-forming oligodendrocyte), and MOL (mature oligodendrocyte) subtypes summarized in pie charts and displayed as
a compressed stacked bar plot (structure plots) for single nuclei ordered by pseudotime. Pseudotime, timepoint, sex, and snRNA-seq barcoding technology are indicated for
each nucleus below the structure plots. j, Proportion of topics in early DG (dentate gyrus) and DG.
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to an average of approximately 16 topics per tissue, with the
adrenal gland having the highest count at 19, and the hip-
pocampus having the lowest at 14 (Fig. S6, S7, S8, S9, S10,
Methods).

Analysis of topic-trait relationships in hippocampal top-
ics indicates that genes crucial for cell type specification are
highly weighted in our topics. Topic-trait relationships are
analyzed using Spearman correlations to associate specific
topics with traits based on cell participation. We observe
that hippocampus topic 1 (HC1) corresponds to astrocytes,
HC2 to DG granule cells, HC4 to oligodendrocytes, HC6 to
inhibitory GABAergic interneurons, HC10 to OPCs, HC11
to endothelial cells, and HC12 to microglia (Fig. 2h). De-
spite the absence of certain protein-coding genes crucial for
cell type-specific functions, such as myelin glycoproteins in
oligodendrocytes10, our identified topics exhibit strong cor-
relations with annotated cell types. Developmental progres-
sion through the oligodendrocyte lineage is accompanied by
topic switching from HC10 in OPCs, to a mix of HC10
and HC4 in intermediate oligodendrocytes (MFOL) to exclu-
sive enrichment of HC4 in mature oligodendrocytes (MOL).
Breakdown of cell participation in OPCs and oligodendro-
cytes shows gradual expansion of HC4 from 3% to 48% to
85%, while HC10 diminishes from 63% in OPCs to 29% in
MFOLs during glial differentiation (Fig. 2i). Minor topics
HC5 and HC7 remain active throughout differentiation, po-
tentially representing general glial programs that are turned
on regardless of subtype. Structure plots are stacked bar
plots showing the proportion of topic participation, where
each column is a single nucleus grouped by annotated cell
type. Ordering of nuclei by pseudotime shows that as cells
differentiate, HC10 is gradually replaced by HC4 while mi-
nor topics remain constant (Fig. 2i). Notably, topic modeling
also captures annotated cell states. HC9 accounts for 43%
of the participation of early cells in the DG, while HC2 cor-
responds to 67% of the participation of mature granule cells
(Fig. 2j). Once again, ordering by pseudotime emphasizes
topic switching, as HC9 decreases during granule cell mat-
uration. Thus, the expression patterns of regulatory genes
alone suffices to define both transcriptional cell types and cell
states.

Comparing the number of topics detected per nucleus,
we observed that most nuclei in each tissue are effectively
characterized by more than one topic, and a median of 2 top-
ics accounts for 80% of cell participation (Fig. 3a). This re-
sult supports our hypothesis that cells concurrently run multi-
ple programs, especially during transitional processes of dif-
ferentiation or maturation8, as evidenced here in hippocam-
pal cell types. Importantly, topics with high cell participation
are consistently enriched for specific cell types and states, a
trend observed across all tissues (Fig. 3b, S6, S7, S8, S9,
S10). Conversely, topics with low participation are typically
not associated with any particular cell type (Fig. 3b, shaded
gray). At our chosen resolution, all cell types with >1,400
nuclei are captured by at least one topic. In addition to hav-
ing the highest number of topics compared to other tissues,
adrenal gland has the most distinct annotated cell types (10),

surpassing other tissues (6, 7, 8, and 8 in cortex, hippocam-
pus, heart, and gastrocnemius, respectively). Interestingly,
in both the adrenal gland and heart, a particular topic con-
sistently showed enrichment in cycling cells, irrespective of
their cell type of origin (Fig. S6, S9).

Tissue-specific signals in microglia and macrophage
topics. Immune cells are represented by topics with high
cell participation across all five tissues. In cortex and hip-
pocampus, topics CX8 and HC12 are associated with mi-
croglia, while AD14, HT3, and GC10 correspond to resident
macrophages in the adrenal gland, heart, and gastrocnemius,
respectively (Fig. 3a). Microglia, the brain’s resident im-
mune cells, originate from progenitors formed during the first
wave of primitive hematopoiesis around embryonic day (E)
7.556,57. They migrate to the developing central nervous sys-
tem (CNS) through the bloodstream, typically around E9.5 in
mice58. After prenatal establishment in the CNS, microglia
undergo proliferation and expansion, reaching their peak two
weeks after birth and sustained through low proliferation lev-
els into adulthood58. The second wave of hematopoiesis
gives rise to yolk sac macrophages, a portion of which ex-
pand and differentiate into tissue-resident macrophages by
E9.556. While previous studies have compared the gene ex-
pression profiles of macrophages and microglia derived from
adult human brain and blood in culture59,60, as well as infil-
trating macrophages and microglia in adult rat brain61, our
data and analysis leverage multiple coordinated tissues from
the same individual mice.

An MA plot of gene weights for the microglial topics
in hippocampus (HC12) vs cortex (CX8) reveals very similar
topic compositions, aligning with our expectations (Fig. 3c).
Very few genes have an absolute log ratio (M) value > 5 (47
in hippocampus, 8 in cortex) (Fig. 3c), none of which have
been implicated in regional microglial signatures. Genes in-
volved in microglia polarization (e.g., Irf862 and Stat363), ac-
tivation and inflammatory response (e.g., Spi164 and Irf265),
and establishment of microglia identity and immune response
(e.g. Sall166, Sall367, Etv568, and Zeb169 all have high
mean average (A) values in both cortex and hippocampus mi-
croglia topics. Thus, regulatory topics assign similar weights
for genes from identical cell types in different tissues when
trained independently.

By contrast, comparison of hippocampus microglia
topic HC12 and heart macrophage topic HT3 reveals 165
genes with |M| > 5 (67 in hippocampus, 98 in heart).
Microglia-specific genes such as Sall1, Sall3, Etv5, and Zeb1
are more highly weighted in hippocampus, whereas genes in-
volved in macrophage differentiation, polarization, and in-
flammatory pathway signaling such as Runx370, Foxo171,72,
and Tfec73,74 exhibit higher weights in heart (Fig. 3d). Inter-
estingly, Tfec expression has been shown to be activated by
Stat6, another heart-specific macrophage TF in our compari-
son, which transduces IL-4 signals and binds to the promoter
of Tfec74 (Fig. 3d). Additionally, Foxo1 expression has been
linked to cardiac fibrosis following macrophage activation75.
Due to their similar weights across topics in both tissues,
Spi1, Irf2, Irf8, and Stat3 may belong to a common transcrip-
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Figure 3. Characterization of topics across diverse tissues. a, Comparison of the number of topics required to constitute 80% of cell participation when sorted from the
largest to the smallest proportion per nucleus, along with the percentage of nuclei in each category out of the total nuclei per tissue. b, Distribution of cell participation in
each topic across all five tissues, with violins colored by associated celltype, when possible (see Fig. 1c for color legend). c, MA plot comparing HC12 with CX8. X-axis (A)
represents average weight of the gene between both topics in the comparison, and y-axis (M) represents log base 2 of the fold change of gene weight between topics.
Genes of interest are labeled. d, MA plot comparing HC12 with HT3. e, Percent of topics containing each gene in the TF biotype vs. median of the gene’s weight across all
topics when the gene weight is >= 1. Percentages of genes in each quadrant, out of the total number in the biotype, are labeled. Percent of topics containing each gene in
each biotype vs. median weight across topics for f, chromatin binders, g, transcriptional regulators, h, chromatin regulators, i, microRNA host genes, j, histone modifiers,
and k, TAF-MED complex-associated genes. l, Gene biotype simplex with a sector for chromatin (left), encompassing chromatin binders, chromatin regulators, and histone
modifiers, a sector for TFs and microRNA host genes (top), and a sector for all other biotypes (right). Topics are color-coded by tissue and scaled by number of genes. m, 20
clusters of correlated topics (C1 - C20), filtered to connections >= 0.9 cosine similarity. Each node represents a topic, color-coded by tissue, and edges labeled by cosine
similarity score calculated on the basis of gene weights between topics.
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tional signature of shared immune functions between postna-
tal microglia and macrophages.

Mitosis topics are driven by chromatin regulators. We
then asked whether particular classes of regulatory genes
were found in most topics or were more specific to a subset of
topics. We calculated the percentage of topics where a gene
surpasses a minimal weight threshold of 1 compared to the
median of its weight across all topics (Fig. 3e-k). Notably,
30% or more of genes classified as chromatin regulators (Fig.
3f, h, j) occupy the upper right quadrant, indicating they are
highly weighted in most topics. In contrast, transcription fac-
tors, transcription regulators, microRNA host genes, and the
TAF and Mediator complex family of genes exhibit a differ-
ent pattern, with 20% or less highly weighted in most topics
(Fig. 3e, g, i, k). TFs are mostly either highly weighted
and topic-specific (59%, upper left quadrant) or specific with
lower weights (26%, lower left quadrant). A simplified anal-
ysis of gene biotype enrichment within topics revealed two
topics (HT6 and AD5) highly enriched for chromatin reg-
ulators compared to TFs and microRNA host genes (Fig.
3j, Methods). Interestingly, these topics correspond to our
cycling topics, primarily influenced by a proliferative state
rather than their cell type of origin (Fig. S6, S9). Our results
suggest that cellular programs essential for mitosis, particu-
larly those governing chromatin condensation and structure,
are primarily orchestrated by chromatin regulators. In con-
trast, programs driven by transcription factors play a lesser
role in directing a proliferative cell state.

Topics in shared cell types from diverse tissues clus-
ter together. We can use cosine similarity, which measures
the angle between two topics in gene space, to evaluate dif-
ferences in relative gene weights. It is similar to other corre-
lation methods, where 0 indicates low concordance between
topics and 1 represents high concordance for positive gene
weights. By computing the cosine similarity for each pair
of topics among the 82 total topics, and subsequently filter-
ing clusters for those with a cosine similarity above 0.9, we
identified 20 distinct clusters of topics (Fig. 3m, Methods).
As expected, cycling topics HT6 and AD5 are highly cor-
related with a cosine similarity of 0.93, along with a large
cluster of endothelial topics across all five tissues (C9 and
C1, respectively, Fig. 3m). Topics representing common cell
types across brain regions cluster in C4 (glutamatergic neu-
rons), C10 (GABAergic interneurons), C11 (microglia), C12
(astrocytes), C13 (OPC), and C14 (oligodendrocytes). Inter-
estingly, the macrophage cluster C3 is distinct from the mi-
croglia cluster C11. As observed in comparing HC12 and
HT3 (cosine similarity 0.83, Fig. 3d), tissue-specific signa-
tures in macrophages and microglia likely drive the differ-
ences in gene weights between microglia and macrophage
topics. C1 includes two cardiac heart topics, while C19 and
C20 represent additional signatures in cardiac endothelial and
endocardial cells, distinct from the general endothelial signa-
ture shared across all five tissues. In summary, the regulatory
topics capture core cellular programs that can be compared
across tissues with related cell types.

Characterizing cell type specificity in candidate
cis-regulatory elements. TFs regulate expression of target
genes by binding to cis-regulatory elements (CREs) in open
chromatin54. The landscape of open chromatin, measured
using single nucleus ATAC-seq, provides insight into accessi-
ble regulatory elements at the single-cell level. We leveraged
the ENCODE registry of candidate cis-regulatory elements
(cCREs) in mouse derived from chromatin accessibility, hi-
stone modifications, and DNA affinity purification sequenc-
ing76 to score our snATAC-seq data across a consistently-
defined set of chromatin regions. These elements play crucial
roles in gene regulation by providing binding sites for tran-
scription factors and influencing chromatin accessibility76.
Around 43% of these regions are classified as candidate distal
enhancers by H3K27ac and DNase I hypersensitivity, 12% as
proximal enhancers, and 31% were determined by chromatin
accessibility data alone (Fig. S11). Accessibility across the
full set of 926,843 cCREs was scored in pseudobulk snATAC
nuclei using the integrated clusters from snRNA-seq analy-
sis. The cCREs >5 RPM in at least one pseudobulk cluster
per annotated cell type (390,146 total across our tissues) were
classified as specific, shared, general, or global by mapping
each cluster to its annotated cell type. We categorized cCREs
accessible in only one cell type as ‘specific’, those accessible
in more than one cell type within or across tissues as ‘shared’,
those accessible in all major cell types within a tissue as ‘gen-
eral’, and cCREs accessible in all major cell types across all
tissues as ‘global’. Most cCREs are either specific to one
cell type (43.1%) or shared (47.9%), with only 9% classi-
fied as general or global (Fig. 4a). The cell-type-specific
landscape of accessible regulatory elements, particularly en-
hancers, sets the stage for transcription factors to bind and
dynamically control gene expression during postnatal devel-
opment.

Tissue-specific analysis reveals the most cell type-
specific elements in cerebral cortex and hippocampus, driven
by robust neuronal signatures, with heart displaying the least
cell type specificity (Fig. 4b). Indeed, breakdown by cell
type in the hippocampus emphasizes glutamatergic neurons
as the most specific, and to a lesser extent microglia and per-
icytes (Fig. 4c). In other tissues, the major cell type also
exhibits a robust chromatin signature, such as myonuclei in
the gastrocnemius and cortical cells in the adrenal gland (Fig.
4d, e). To further explore the dynamics and sex specificity of
the chromatin landscape, which likely contribute to variations
between certain cell types, differential accessibility analyses
were conducted between timepoints and sexes in accessible
cCREs. The largest proportion of differentially accessible
cCREs between PND 14 and 2 months are detected in gas-
trocnemius tissue, while most sex-differential cCREs are de-
tected in adrenal gland (Fig. 4f). This is consistent with bio-
logical processes in the major cell types of these tissues; my-
onuclei in the gastrocnemius are transitioning to their mature
fiber type, and the X-zone is emerging in the adrenal zona
fasciculata during puberty, emphasizing the dynamic nature
of chromatin accessibility during crucial postnatal stages.
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Regulatory motifs are enriched in cell-type-specific
cCREs. Although most perinatal myonuclei disappear by
PND14, type 1 fibers and fibro-adipogenic progenitors recede
while 2B fibers expand, ultimately constituting over three-
quarters of the nuclei in gastrocnemius by 2 months (Fig.
S5). Given that the majority of dynamic cCREs are cell-
type specific (Fig. 4g) and the predominant cell-type-specific
cCREs are found in myonuclei (Fig. 4d), we then focused
on TF binding in myonuclear subtypes. We performed mo-
tif enrichment analysis using ArchR77 in myonuclei-specific
cCREs, classified by their accessibility in muscle fibers and
satellite cells, to identify potential regulators which were then
matched to TFs featured in our topic modeling (Methods, Fig.
S12). Notably, some TFs exhibited concordant motif activ-
ity patterns and topic weight. The Pax7 motif is enriched in
satellite-specific cCREs (Fig. 4h) and also included in the
satellite-associated topics (Fig. 4i). This is fully consistent
with expectations from known biology. Alternatively, Myog
binding was detected and the TF found highly weighted in
one major satellite topic (GC15, 44% participation in satel-
lites), whereas it is not detected in the minor satellite topic
(GC8, 12% participation) (Fig. 4h,i, S12). The more dom-
inant topic potentially reflects satellite cells actively under-
going postnatal myogenic differentiation, while the minor
topic may signify the self-renewing pool of satellite cells
that actively inhibit the expression of myogenin and related
MRFs44,45. Previous studies have found interactions between
Tcf12 and Mef2c and MRFs such as Myod1 in skeletal muscle
implicated in skeletal muscle formation78–82. While Tcf12
was weighted in nearly all myonuclear topics, its homod-
imer motif enrichment showed highest activity in satellite
cells, in which previous studies have shown it to be a cru-
cial regulator of chromatin remodeling78, whereas the het-
erodimer motif is weakly enriched in Type 1 and Type 2 my-
onuclei. Similarly, Mef2c is found in all non-satellite topics
but its motif-inferred activity is only in type 1 myonuclei.
Mef2c has indeed been linked to type 1 specification by re-
sponding to calcium-dependent signaling pathways that al-
ter Mef2 protein post-translationally where it acts to promote
the transition between fast glycolytic fibers to slow oxidative
fibers79–82. In both cases, integrating accessibility and motif
enrichment suggests how known post-transcriptional controls
of specific TFs can parse muscle RNA topics, and from this
we can make testable predictions about cCREs that are likely
involved.

Comparison of sex-specific regulatory activity in the
adrenal zona fasciculata. We then turned to sex-specific
cCREs that are also cell-type-specific in adrenal gland (Fig.
4j). Unsurprisingly, female cCREs overlap those attributed
to the X-zone and zona fasciculata (Fig. 4k), as well as
adipocytes. In males, a faint signature is seen in the nu-
clei annotated as male ZF. We focused motif enrichment on
the X-zone, male ZF, and non-sex-specific ZF to investigate
binding activity of key TFs from differential expression anal-
ysis and topics modeling. Runx2, upregulated in female com-
pared to male ZF, has distinct binding activity in X-zone-
specific cCREs (Fig. 4l). It is also a top-weighted gene in

the X-zone topic AD6 (Fig. 4m). Despite a previous study
in Runx2 knockout mice suggesting no direct contribution to
sex determination83, it may regulate genes involved in steroid
metabolism, as evidenced in mouse osteoprogenitor cells84.
Furthermore, estrogen receptor alpha has been observed to
colocalize with Runx2 in breast cancer and osteoblasts, al-
though their expression is inversely related85. In contrast to
Runx2, Thrb is also differentially upregulated in female ZF
but is weighted similarly in X-zone topic AD6 and male ZF
topic AD12 with binding activity solely in the male ZF (Fig.
4l, m). Likewise, the androgen receptor gene Ar is highly
weighted in both the X-zone topic AD6 as well as male ZF
topic AD12, but only active in male ZF (Fig. 4l, m). Ar is
expressed in both male and female sex-specific regions, al-
though more so in the X-zone compared to the male-specific
ZF (Fig. S1). Recent studies have identified androgen sig-
naling via the androgen receptor as a requirement for X-zone
regression during puberty in male mice86, while Ar signaling
is not essential for regression in female mice87. Our results
suggest androgen signaling in male ZF may be mediated by
lower levels of Ar compared to female ZF, perhaps due to co-
activator expression, accessible chromatin at target gene pro-
moters, or involvement of factors from other tissues, such as
the hypothalamic-pituitary-gonadal axis. More broadly, the
sexual dimorphic binding activity of transcription factors that
are similarly expressed in these homologous cells highlights
the fundamental limitations of studying gene regulation us-
ing RNA expression alone when ignoring sex as a biological
variable.

Discussion
The ENCODE4 mouse single-nucleus dataset stands out
from other genomic catalogs by offering a comprehensive
map of postnatal development across diverse tissues, span-
ning from just after birth to late adulthood in both sexes. This
inclusivity allowed us to analyze sexual dimorphism across
time, as in the example of sex-specific adrenal cortex pop-
ulations during puberty. The dataset facilitated comparison
of maturation rates across tissues, revealing significant dif-
ferences. For instance, the most significant changes in the
adrenal gland occur between 2 months and 18-20 months as
sex-specific cortical layers regress, while the largest changes
in gastrocnemius occur from postnatal day 4 to postnatal day
10 as myofibers mature. A time course at this resolution
enables investigations into large-scale dynamics as well as
the maintenance of adult stem cell pools like OPCs, NPCs,
and satellite cells. Additionally, integration of snRNA-seq
data between Parse and 10x barcoding platforms underscores
the complementary information captured by each technol-
ogy. In summary, this dataset presents a unique opportu-
nity to explore postnatal development throughout the entire
mouse body at unprecedented single-cell resolution, offering
insights from various biological and technical perspectives.

All experiments were conducted in a B6/CAST hybrid
genotype, facilitating future exploration of the genetic basis
of complex molecular traits. B6J (M. m. domesticus), which
is the most commonly used laboratory mouse and the first
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Figure 4. Characterization of celltype-specific candidate cis-regulatory elements and motif enrichment analysis. a, 390,146 ENCODE mm10 cCREs filtered by > 5
RPM in 10x snATAC-seq data pseudobulked by integrated snRNA-seq clusters. Specific cCREs in blue (168,443) are accessible in only one celltype above 5 RPM across all
tissues, shared in grey (186,805) are accessible in more than one celltype within or across tissues, general in dark grey (21,314) are accessible in all major celltypes within a
tissue, and global in black (13,584) are accessible in all major celltype across all tissues. b, Number of cCRE per specificity category in each tissue. Breakdown of cCRE
specificity by percent of cCREs detected in each celltype in c, hippocampus, d, gastrocnemius, and e, adrenal gland as well as total number of nuclei per celltype. f,
Percentage of the cCREs detected in each tissue with significant increase in accessibility in each group compared to its counterpart across all tissues. g, Overlap of
differentially accessible cCREs between timepoints with specificity categories, reported as percent differentially accessible out of total detected in each tissue. h, Motif
enrichment (adj. p-value < 0.05) of expressed TFs (TPM > 5 in at least 1 bulk RNA-seq sample) in myonuclear subtype-specific cCREs. i, Weight of TFs as ordered in h
across topics corresponding to myonuclear subtype-specific subtypes. j, Overlap of differentially accessible cCREs between sexes with celltype specificity categories,
reported as percent differentially accessible out of total detected in each tissue. k, Overlap of sex-specific cCREs with cell-type-specific cCREs, reported as percent
differentially accessible out of total detected in each tissue. l, Motif enrichment (adj. p-value < 0.05) of expressed TFs (TPM > 5 in at least 1 bulk RNA-seq sample) in
adrenal ZF subtype-specific cCREs. m, Weight of TFs as ordered in l across topics corresponding to adrenal ZF subtypes.

murine genome published, diverged from CAST (M. m. cas-
taneus) approximately one million years ago88,89. As a wild-
derived strain, CAST harbors 17.6 million single-nucleotide
polymorphisms relative to the B6J reference genome90 and it
exhibits phenotypic differences in behavior and hearing abil-
ity91. These strains represent broader genetic diversity, re-
sembling natural populations, and are two of the founders
of the Collaborative Cross92. An open question is whether
any of the cell states described here would be specific to the
F1. Examining gene expression differences in both B6 and
CAST parents with our results in the offspring could allow
us to determine the impact of a particular allele as acting in
cis or trans93. Besides allele-specific gene expression, we
could also compare traits such as proportions and dynamics

of cell types, as well as participation in the regulatory topics
described here, streamlining the identification and analysis of
cell types and states.

We applied Topyfic to integrated combinatorial barcod-
ing and multiome snRNA-seq datasets, focusing on a cu-
rated vocabulary of 2,701 regulatory genes. We recovered
82 regulatory topics associated with 46 distinct cell types
and states. Our dataset shows the strength of topic model-
ing for capturing cell-level changes within clusters, as de-
scribed for differentiating cell types such as oligodendrocytes
and DG neurons. Our regulatory topics allowed us to study
the biotypes of genes that change from one topic to another
as well as compare topics learned independently in separate
tissues. Our results indicated an enrichment of transcription
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factor (TF) and microRNA gene biotypes in cell-type-specific
topics, while cycling topics are predominantly influenced by
chromatin regulators. Although most studies of polyadeny-
lated RNA ignore the impact of microRNAs, a significant
fraction of microRNAs are intragenic, most of which are
found within introns of protein-coding genes94,95. MicroR-
NAs can be transcribed by RNA polymerase II together with
their host genes96. One possibility is that microRNAs em-
bedded in the introns of known cell type markers may play
a role in the regulation of expression levels within that cell
type.

Additionally, our analysis identified correlated regula-
tory topics across tissues for shared cell types, such as en-
dothelial cells, while some immune cell types retained a
tissue-specific signature, particularly in trunk organs com-
pared to brain microglia. We further classified ENCODE v4
cCREs based on accessibility in our cell types, revealing that
nearly half of the identified cCREs exhibit cell type speci-
ficity. Lastly, we explored motif enrichment patterns of TFs
within topics in cell type- and state-specific regulatory ele-
ments.

The behavior of rLDA topics aligns with our expecta-
tions about genuine cellular programs: they are predomi-
nantly cell type- and state-specific, often co-expressed, re-
producible across tissues, and can be defined using regula-
tory genes alone, especially TFs. Focusing on regulatory
genes offers direct insight into cellular programs by ensuring
the inclusion of TFs in each topic rather than putting higher
weights on downstream targets, many of which encode struc-
tural proteins or have no known function. It is also likely that
there will be interesting differences in specific topics in dif-
ferent mouse strains as well as possibly altogether new topics
for cell states not present in our F1 mice. It is crucial to note
that a TF’s presence in a topic does not automatically imply
active involvement in regulatory programs, and further ver-
ification may require follow-up experiments and integration
with chromatin accessibility or DNA binding data. By lever-
aging corresponding chromatin accessibility data, we identi-
fied cases where a top-weighted TF exhibits enriched binding
in a cell type associated with its topic, as well as instances
where topic TFs are active in different cell types or states.
Our results demonstrate the successful identification and in-
terpretation of cellular programs using topic modeling across
multiple tissues and barcoding platforms, establishing a foun-
dation of non-exclusive transcriptional programs operating
across postnatal development. We also showed they can be
linked to downstream cis-regulatory targets.

Data and code availability

• Data availability: ENCODE carts of all data used are
listed in Table S1.

• Data processing/figure generation code: https://
github.com/erebboah/enc4_mouse_paper/
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Methods
Mice and tissue collection. All animals were treated and housed in accordance with the Guide for Care and Use of Laboratory
Animals. Approval for all experimental procedures was granted by Caltech’s Institutional Animal Care and Use Committee
(IACUC), aligning with both institutional and national guidelines. Samples were obtained from animals covered under the
approved IACUC protocol #IA21-1647, “Single-cell transcriptome studies from multiple mouse tissues”. Tissues at postnatal
day (PND) 4, PND 10, PND 14, PND 25, PND 36, 2 months, and 18-20 months from C57BL6/J (RRID:IMSR_JAX:000664)
× CAST/EiJ (RRID:IMSR_JAX:000928) F1 hybrid mice were obtained from Jackson Laboratories (JAX). Adrenal gland and
gastrocnemius tissues were pooled from 3 individuals for PND 4 and PND 10 timepoints. Hippocampus tissues were pooled
from 3 individuals for PND 10 and PND 14 timepoints. Tissues were flash-frozen in liquid nitrogen and delivered to Caltech
on dry ice, where they were stored at -80°C until RNA extraction.

Isolation of RNA for bulk assays. For bulk RNA-seq, total RNA was extracted from flash-frozen tissues at Caltech using the
Norgen Animal Tissue RNA Purification Kit (Norgen Biotek cat. #25700). The tissue was lysed using Buffer RL and proteins
were digested with proteinase K. Genomic DNA was removed with DNaseI treatment on the columns. The purified total RNA
includes includes large mRNAs, lncRNAs, and small RNAs. The Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) was used
to assess RNA concentration and RIN values were determined using the Bioanalyzer Pico RNA kit (Agilent cat. #5067-1513),
with average RIN scores of 8.2 for the adrenal gland, 9.1 for the hippocampus, 9.3 for the cortex, 9.0 for the heart, and 9.3 for
gastrocnemius tissues.

Bulk RNA-seq from mouse tissues. Each cDNA library was built from 300 ng total RNA with ERCC spike-ins (Thermo
cat. #4456740) using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB cat. #E7760), specifically the
protocol for use with NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB cat. #E7490). Ribosomal RNA was depleted
from total input RNA using the NEBNext rRNA Depletion Kit (NEB cat. #E6310). First and second strand synthesis, cDNA
end prep, adapter ligation, and finally PCR amplification resulted in the final libraries. The libraries were quantified using the
Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) and sequenced on an Illumina HiSeq 2500 as 100 bp single-end reads
to 50 M raw read depth. For submission to the ENCODE portal, libraries needed at least 30 M aligned reads and a Spearman
replicate correlation >0.9.

Purification of nuclei for Split-seq. For Parse Split-seq experiments performed at UCI, nuclei were isolated from the 5 core
tissues (adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius) for all 7 timepoints (PND 4, PND 10, PND
14, PND 25, PND 36, 2 months, and 18-20 months). Flash-frozen tissues shipped from Caltech were transferred to a chilled
gentleMACS C Tube (Miltenyi Biotec cat. #130-093-237) with 2 mL Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-
024) supplemented with 0.2 U/uL RNase Inhibitor (NEB cat. #M0314L) on ice. Nuclei were dissociated from whole tissues
using a gentleMACS Octo Dissociator (Miltenyi Biotec cat. #130-095-937). Suspensions were filtered through a 70 um strainer
then a 30 um strainer (Miltenyi Biotec cat. #130-110-916 and #130-098-458, respectively). Nuclei were resuspended in cold
PBS + 7.5% BSA (Life Technologies cat. #15260037) and 0.2 U/ul RNase inhibitor for manual counting using a hemocytometer
and DAPI stain (Thermo cat. #R37606). For gastrocnemius tissue, debris was removed from nuclei suspensions with Debris
Removal Solution (Miltenyi Biotec cat. #130-109-398). Nuclei were mixed with Debris Removal Solution and layered on top
of PBS, then centrifuged at 4°C, 3000 x g for 10 minutes with full acceleration and no brake. Nuclei bands were separated from
debris layers and concentrations were determined using a hemocytometer. For Parse Split-seq, 1-4 million nuclei per sample
were fixed using Parse Biosciences’ Nuclei Fixation Kit v1 (Parse Biosciences cat. #WN100), following the manufacturer’s
protocol. Briefly, nuclei were incubated in fixation solution for 10 minutes on ice, followed by permeabilization for 3 minutes
on ice. The reaction was quenched, then nuclei were centrifuged and resuspended in 300 uL Nuclei Buffer (Parse Biosciences
cat. #WN101) for a final count. DMSO (Parse Biosciences cat. #WN105) was added before freezing fixed nuclei at -80°C.

Parse Split-seq experiments. Nuclei were barcoded using Parse Biosciences’ Evercode WT Kit v1 (cat. #EC-W01030),
following the manufacturer’s protocol. Briefly, fixed nuclei were thawed and added to the Round 1 reverse transcription
barcoding plate at 15,000 nuclei per well across 48 wells. Individual samples from each tissue were distributed in sample
barcoding plates with at least 1 well per individual. Within the fixed nuclei, RNA was reverse transcribed using oligodT and
random hexamer primers and the first barcode was annealed. After RT, nuclei were pooled and distributed in 96 wells of the
Round 2 ligation barcoding plate for in situ barcode ligation. After Round 2, nuclei were pooled and redistributed into 96
wells of the Round 3 ligation barcoding plate for barcode 3 and Illumina adapter ligation. Finally, nuclei were counted using
a hemocytometer and distributed into 6 subpools for adrenal, 6 subpools for cortex, 5 subpools for hippocampus, 4 subpools
for heart, and 5 subpools for gastrocnemius, each containing 12,000 nuclei, with 2 additional subpools of 15,000 nuclei for
gastrocnemius. Nuclei from each tissue were also distributed into 1-2 small subpools of 1,000-2,000 nuclei each, for a target
of around 75,000 nuclei per tissue (>500 UMI). The nuclei in each subpool were lysed and the barcoded cDNA underwent
template switching and amplification. The cDNA was cleaned using AMPure XP beads (Beckman Coulter cat. #A63881)
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and quality checked using the Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) and a Bioanalyzer 2100 (Agilent cat. #
G2939A) High Sensitivity DNA Kit (Agilent cat. #5067-4626) before proceeding to Illumina library preparation with 100 ng
of full-length cDNA per subpool. Subpool cDNA was fragmented and Illumina P5/P7 adapters were ligated during the final
amplification, followed by size selection and quality check with the Bioanalyzer and Qubit. Libraries with 5% PhiX spike-in
were sequenced on an Illumina NextSeq 2000 sequencer with P3 200 cycles kits (Illumina cat. #20040560) as paired-end,
single-index reads (115/86/6/0) to an average depth of 181 M reads per 12,000-15,000-nucleus library and an average depth of
134 M reads per 1,000-2,000-nucleus library.

Purification of nuclei for 10x Multiome. For 10x Multiome experiments performed at Stanford University, nuclei were
isolated from 5 core tissues for PND 14 and 2 month timepoints. Flash-frozen tissues were dissociated in a Douce homogenizer
with 1 mL homogenization buffer: 0.26 M sucrose (Sigma cat. #S7903-250G), 0.03 M KCl (Thermo cat. #AM9640G), 0.01 M
MgCl2 (Thermo cat. #AM9530G), and 0.02 M Tricine-KOH pH 7.8 (Sigma cat. #T0377), supplemented with 0.6 U/uL RNase
Inhibitor (Thermo cat. #EO0384). Suspensions were filtered through a 40 um strainer (Fisher Scientific cat. #22363547) and
debris was removed using an iodixanol gradient. Iodixanol solution was diluted from 60% iodixanol (Sigma cat. #D1556-
250ML) with dilution buffer consisting of 0.15 M KCl, 0.03 M MgCl2, and 0.12 Tricine-KOH pH 7.8. Nuclei were mixed
1:1 with 50% iodixanol solution, then 30% iodixanol solution was layered underneath the 25% mixture, and 40% iodixanol
solution was layered at the bottom. Nuclei were centrifuged at 4°C, 3000 x g for 20 minutes with full acceleration and no
brake and the nuclei band was separated from the debris layer. Concentrations of the final suspensions were determined using a
hemocytometer. Nuclei were immediately processed following the Chromium Next GEM Single Cell Multiome ATAC + Gene
Expression User Guide (CG000338).

10x Multiome experiments. Gene expression and chromatin accessibility were profiled simultaneously in the same nuclei
using the Chromium Next GEM Single Cell Multiome ATAC + Gene Expression kit (10x Genomics cat. #1000283) following
the manufacturer’s protocol. Briefly, around 16,000 nuclei were loaded per well in the microfluidic chip and partitioned into
gel beads-in-emulsions (GEMs) for a target recovery of 5,000-10,000 nuclei per sample (around 80,000 nuclei per tissue).
During incubation, transposase cleaved open regions of DNA and added GEM-specific adapter sequences to the fragments.
After transposition, the nuclei lysates were reverse transcribed using oligodT primers, which also adds GEM-specific barcodes
and UMIs to the resulting cDNA. The GEMs were then broken and the transposed DNA and barcoded cDNA underwent pre-
amplification PCR to produce the input material for parallel snATAC-seq and snRNA-seq library building. For snATAC-seq,
Illumina P5/P7 adapters were added during sample index PCR and the final libraries were cleaned using SPRIselect beads
(Beckman Coulter cat. #B23318). For snRNA-seq, the barcoded cDNA underwent template switching and amplification,
and was then fragmented and size-selected using SPRIselect beads. Illumina P5/P7 adapters were added during sample index
PCR and the final snRNA-seq libraries were cleaned using SPRIselect beads. The snATAC-seq libraries were sequenced on
an Illumina NovaSeq 6000 sequencer as paired-end, dual-indexed reads (50/50/8/24) to an average depth of 180 M reads per
library. The snRNA-seq libraries were sequenced on an Illumina NovaSeq 6000 sequencer as paired-end, dual-indexed reads
(28/90/10/10) to an average depth of 194 M reads per library.

Demultiplexing Parse Biosciences snRNA-seq data. Due to the combinatorial barcoding approach, raw fastqs from Parse
snRNA-seq libraries contain all samples included in the experiment. In order to provide sample-level fastqs to the ENCODE
portal, Parse Biosciences’ split-pipe software v0.7.6p and custom code were used to assign reads to samples. Briefly, split-pipe
v0.7.6p was used to generate an annotated fastq with read names containing cell barcodes (process/single_cells_barcoded_-
head.fastq.gz) as well as a cell metadata file (all-well/DGE_unfiltered/cell_metadata.csv) mapping barcode to sample for each
pair of subpool fastqs associated with an experiment. A custom python script calls seqtk v. 1.3-r106 (https://github.
com/lh3/seqtk) to extract reads from the original fastqs and output them as sample-level fastq files.

Read mapping and quantification. All data quantifications were downloaded from ENCODE portal using carts, organizing
the data based on assay and/or tissue (refer to Table S1 for links to carts).

Bulk and single-nucleus RNA-seq data were processed through ENCODE uniform processing pipelines using the mm10
genome with Gencode vM21 annotations. For bulk RNA-seq, the data were aligned using STAR v. 2.5.1b97 and quanti-
fied using RSEM, which provides FPKM, TPM, and raw counts (https://www.encodeproject.org/pipelines/
ENCPL862USL/).

The snRNA-seq data were aligned using STARSolo v. 2.7.10a98 with GeneFull_Ex50pAS settings to generate UMI count
matrices (https://www.encodeproject.org/pipelines/ENCPL257SYI/), similar to the intronic count option
in 10x’s Cell Ranger.

Single-nucleus ATAC-seq data were processed using the standard ENCODE snATAC-seq pipeline with the mm10 genome
to generate fragment files which were used as input to downstream analyses (https://www.encodeproject.org/
pipelines/ENCPL952JRQ/).
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Bulk RNA-seq analysis. Normalized bulk RNA-seq quantifications were concatenated across all samples using the TPM
column from the ENCODE pipeline. In each tissue, the number of regulatory genes in each category were counted if they were
expressed at >1 TPM in at least 1 bulk sample.

QC and filtering of single-nucleus data. Analyses were performed on a per-tissue basis and all input files were downloaded
from the ENCODE portal. The snRNA-seq tar files contain sparse matrices with corresponding gene and barcode CSV files.
The corresponding snATAC-seq tar files for 10x Multiome contain compressed TSV fragments and indices. For Parse Split-seq,
the number of datasets varies depending on the number of subpools set aside per tissue.

To perform the integrated snRNA-seq analysis, 42 Parse Split-seq datasets and 8 10x Multiome datasets for adrenal gland,
32 Parse Split-seq datasets and 8 10x Multiome datasets for cortex, 34 Parse Split-seq datasets and 8 10x Multiome datasets
for hippocampus, 28 Parse Split-seq datasets and 8 10x Multiome datasets for heart, and 56 Parse Split-seq datasets and 8 10x
Multiome datasets for gastrocnemius were downloaded from the ENCODE portal (Table S3). Genes were filtered for protein
coding, lncRNAs, pseudogenes, and microRNAs. Ambient RNA was filtered from droplet-based 10x data using Cellbender v.
0.2.299. Doublet detection was performed on nuclei with > 500 UMIs detected per nucleus using Scrublet v. 0.2.3100.

Data were filtered differently for the “standard” Parse Split-seq libraries (12,000-15,000-nucleus subpools), small Parse
Split-seq libraries (1,000-2,000-nucleus subpools), and 10x Multiome nuclei (5,000-nucleus libraries). The Parse Split-seq
nuclei belonging to the 12-15,000-nucleus subpools were filtered by > 500 and < 30,000 UMIs per nucleus, > 500 genes
expressed, < 0.2 doublet score, and < 0.5 percent mitochondrial gene expression for adrenal gland, cortex, and hippocampus,
and the 1-2,000-nucleus subpools by > 1000 and < 50,000 UMIs. For heart, the filters were relaxed slightly to < 0.25 doublet
score and < 1 percent mitochondrial gene expression and further relaxed for gastrocnemius to < 5 percent mitochondrial
gene expression. The 10x Multiome nuclei were filtered slightly differently: > 500 and < 30,000 UMIs, > 300 genes, <
0.25 doublet score, and < 5 percent mitochondrial gene expression for cortex, hippocampus, and gastrocnemius, and > 1000
UMIs, < 0.2 doublet score, and < 0.5 percent mitochondrial gene expression for adrenal gland and heart. In addition, 10x
Multiome nuclei were also filtered by > 1000 unique nuclear fragments, TSS enrichment > 4, and < 1 ArchR doublet score
in the corresponding snATAC-seq data. After initial processing of snATAC-seq data (described below), barcode sequences
from snRNA-seq and snATAC-seq multiome nuclei were matched and nuclei failing snATAC-seq QC were excluded from
downstream snRNA-seq analysis. All filtering parameters per library can be found in Table S2.

Preprocessing 10x snATAC-seq data. ArchR Arrow files were generated for each tissue using the ENCODE processed
fragments files from 8 experiments with a minimum TSS enrichment of 4, minimum 1,000 unique fragments per cell, and
excluding reads from mitochondrial DNA in downstream analysis77. Doublets were scored and filtered using ArchR’s “ad-
dDoubletScores” and “filterDoublets” functions with an enrichment threshold of 177. ArchR projects for each tissue were
saved and barcode sequences were translated into their snRNA-seq counterpart and saved as csv files. After snRNA-seq filter-
ing, nuclei failing snRNA QC were dropped from the ArchR project using “subsetArchRProject”.

Integration of Parse and 10x snRNA-seq data. After filtering the 3 Seurat objects per tissue (standard Parse, small Parse,
and 10x Multiome), each was normalized using the function “SCTransform” in Seurat v. 4.1.1101, with number of genes
expressed per nucleus and percent mitochondrial gene expression regressed out. Anchors for integration across the 3 objects
were calculated using “SelectIntegrationFeatures” with 3,000 genes, “PrepSCTIntegration”, and “FindIntegrationAnchors” in
Seurat, with the standard Parse dataset serving as the reference due to inclusion of all 7 timepoints. After integrating data
(“IntegrateData”), principal component analysis was performed on the integrated assay by the “RunPCA” function with 50
principal components, with the UMAP (“RunUMAP”) calculated from the first 30 components. Clustering was performed with
the Louvain clustering algorithm (“FindClusters”) with resolution 0.8, with sub-clustering performed as necessary on specific
clusters in gastrocnemius and hippocampus due to expression of known marker genes (Fig. S3, S5).

Integrated cell type annotation. When available, reference datasets were used to transfer annotations using “FindTrans-
ferAnchors” in Seurat v. 4.1.1101. For both cortex and hippocampus, a downsampled version of the 1M whole cortex and
hippocampus 10x atlas from 8 week old mice available on the Allen data portal10 was used to transfer subtype-level annota-
tions. Downsampling was performed per “cell_type_alias_label” group, with 1,000 nuclei taken per cell type (or all nuclei,
if < 1,000 were available) for a total of 250,734 nuclei used for label transfer. For the heart dataset, both a human heart cell
atlas23 (486,134 nuclei) and a dataset of 8-14 week old stressed mouse ventricles24 (29,615 nuclei) were used separately for
label transfer. For gastrocnemius, label transfer was performed using P10, P21, and 5-month mouse tibialis anterior datasets6

(28,047 total nuclei). In addition to label transfer, curated marker genes were used to refine predictions (Fig. S1, S2, S3, S4,
S5, Table S3). In lieu of a reference dataset in the case of adrenal gland, marker genes alone were used to annotate celltypes per
cluster. Each cluster was annotated at the finest possible resolution in a grouping titled “subtypes” (in all figures, metadata, and
data objects). This resolution includes dynamic cell states such as OPCs, early DG, the sex-specific populations in the adrenal
cortex, and layer-specific neuronal subtypes in cerebral cortex. Depending on the downstream analysis, subtypes and states
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were grouped into a coarser resolution titled “celltypes”. For example, transient sex-specific populations in the adrenal cortex
are collapsed along with zona fasciculata, and cerebral cortex layers are all annotated as glutamatergic neurons.

Transferring cell type annotations to corresponding snATAC-seq. Cell type annotations were added to each ArchR
project using the per-cell metadata extracted from Seurat objects. Barcode sequences were matched between assays and anno-
tations carried over from snRNA-seq analysis with no modifications.

Differential gene expression analysis of pseudobulk snRNA-seq. The raw, unnormalized counts were extracted from
the annotated Seurat object for subtypes of interest and summed across all nuclei in each individual mouse for a sample-level
pseudobulk counts matrix across all expressed genes. Using pydeseq2102, defined groups such as sex were compared within
subtypes. Results were filtered by an absolute log fold change >1 and adjusted p-value < 0.01.

Pseudotime ordering of dynamic cell states in hippocampus. Cell types of interest were subset from the tissue-level
Seurat object for pseudotime ordering using Monocle 350,103–106. The root cells were chosen for “order_cells” according to
the known stage of the cells. The oligodendrocytes and OPCs were subset from the hippocampus dataset, with root cells
corresponding to the OPCs. For ordering of the DG cells, root cells correspond to the cells from early timepoints. Pseudotime
values for the ordered cells were incorporated into their metadata for downstream analysis.

Calculating single-nucleus regulatory topics using Topyfic. The raw, unnormalized counts were extracted from each
filtered Seurat object per tissue and barcoding technology (Parse and 10x). Genes were filtered to 2,701 regulatory genes19

determined by microRNA-host gene correlations, annotated transcription factors, and genes annotated with the following Gene
Ontology (GO) terms: 0004402 (histone acetyltransferase activity), 0004407 (histone deacetylase activity), 0042054 (histone
methyltransferase activity), 0032452 (histone demethylase activity), 0016592 (mediator complex), 0006352 (DNA-templated
transcription, initiation), 0003682 (chromatin binding), 0006325 (chromatin organization), 0030527 (structural constituent of
chromatin), and 0140110 (transcription regulator activity). MicroRNA host genes were included if they are annotated as a host
gene (e.g. Mir133a-1hg, Mir124a-1hg) and/or their Spearman correlation with expression of the mature microRNA was ≥
0.319.

Depth normalization was performed on each raw counts matrix by tissue (x 5) and technology (Parse and 10x; 10 total
matrices) by a round of proportional fitting followed by log transformation, then another round of additional proportional
fitting107. An anndata object was constructed from the normalized matrix, 2,701 regulatory genes, and per-cell metadata
including subtype and celltype annotations.

Topyfic was run with a range of k values for each tissue and technology using 100 runs of LDA with batch_size of 128
and 5 minimum iterations19. The best k per tissue and technology was determined by comparing k to the number of resulting
topics, n. The closest k to the resulting n value was chosen: k = 15 for Parse and 13 for 10x adrenal, 14 for Parse and 13
for 10x cortex, 13 for Parse and 21 for 10x hippocampus, 11 for Parse and 13 for 10x heart, and 12 for Parse and 8 for 10x
gastrocnemius. Harmony55 was used to combine the best models learned separately from each technology to a unified set of
topics, filtering out topics with participation in less than 1% of nuclei in the smaller of the two datasets. Downstream analysis
such as comparisons between topics was facilitated by analysis of the gene weights in each topic (Tables S4-S8).

Topics analysis. Harmonized snRNA-seq topics in each tissue were characterized by analysis of topic-trait enrichment (Topy-
fic function “TopicTraitRelationshipHeatmap” on the analysis TopModel object), a measurement of how highly-weighted topic
genes are specifically expressed in traits like celltypes, subtypes, ages, and sexes19. Topics were further interpreted by cell par-
ticipation across celltypes and subtypes, represented as pie charts (function “pie_structure_Chart”) and structure plots (function
“structure_plot”)19. Two specific topics of interest, such as immune-related topics in heart and brain, were compared using an
MA plot (function “MA_plot”), and topics were compared across tissues by Pearson correlation based on gene weights19.

Characterizing ENCODE cCRE specificity with snATAC-seq. The ENCODE V4 catalog of candidate cis-regulatory ele-
ments (cCREs) for mm10 was downloaded from the ENCODE portal (https://www.encodeproject.org/files/
ENCFF167FJQ/)76. All 926,843 cCREs were added to each tissue’s ArchR project by the function “addPeakSet”, then scored
using “addPeakMatrix”, which counts the number of fragments per region with a maximum count of 4 to prevent large biases in
the counts77. The raw counts matrices were extracted (“getMatrixFromProject”), pseudobulked by integrated snRNA cluster,
and normalized by RPM. RPKM was not used due to the limited distribution of cCRE lengths, between 150 and 350 bp with
a mean of 269 bp and standard deviation of 64.9 bp (Fig. S11). For clarity in downstream analysis, small clusters of less
than 100 multiome nuclei were removed (such as a cluster corresponding to 16 hepatocytes detected in adrenal gland, most
likely a dissection artifact). Each cCRE was classified as accessible in a celltype if it scored ≥ 5 RPM in at least one cluster
corresponding to that celltype. Categories of “specific”, “shared”, “general”, or “global” were assigned based on the number
of celltypes within and across tissues with open chromatin at each cCRE. “Specific” refers to cCREs accessible in only one
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celltype above the RPM threshold across all tissues. Common celltypes such as macrophages and endothelial cells were consid-
ered one celltype. “Shared” refers to cCREs accessible in more than one celltype within or across tissues. “General” refers to
cCREs accessible in all major celltypes within a tissue, and “global” refers to cCREs accessible in all major celltype across all
tissues. Major celltypes were defined as those whose cumulative sum makes up 90% of the cell types in the tissue; for example
neurons in the brain, myonuclei in skeletal muscle, and adrenal cortical cells, followed by other major types such as glial cells,
endothelial cells, and fibroblasts.

Differential accessibility analysis of pseudobulk snATAC-seq. Pseudobulk cCRE counts matrices were generated per
sample and tissue by extracting raw single-nucleus counts and summing per cCRE across all nuclei from each individual
mouse. Using pydeseq2102, accessibility of the previously characterized cCREs accessible in pseudobulk clusters was compared
between sexes and timepoints within each tissue and group, i.e. female vs. male adrenals at PND 14, female vs. male adrenals
at 2 months, PND 14 vs. 2 month male adrenals, PND 14 vs. 2 month female adrenals, etc. Results were filtered by an absolute
log fold change >2 and adjusted p-value < 0.01. Unique cCREs open in each group were counted and normalized by the total
number of cCREs accessible in the tissue.

Motif enrichment analysis. Motif enrichment was calculated using ArchR to analyze transcription factor activity in celltype
specific cCREs. The JASPAR2024 CORE vertebrate non-redundant PFMs108 were formatted as a custom RangedSummarized-
Experiment, and matches with the full set of cCREs were extracted with motifmatchr109,110. ArchR’s “customEnrichment”
function was used to run hypergeometric-based enrichment testing on the matched motifs and a custom subset of specific
cCREs as a GenomicRanges object77,110. Motifs were filtered by bulk RNA-seq expression in each tissue for downstream
analysis (>5 TPM in at least 1 sample).

Supplementary Tables
• Table S1: List of ENCODE portal carts for single-cell datasets grouped by tissue and assay.
• Table S2: Sample metadata for snRNA-seq experiments.
• Table S3: List of marker genes and their respective cell types in each tissue.
• Table S4: Gene weights in 19 adrenal gland topics.
• Table S5: Gene weights in 16 cerebral cortex topics.
• Table S6: Gene weights in 14 hippocampus topics.
• Table S7: Gene weights in 17 heart topics.
• Table S8: Gene weights in 16 gastrocnemius topics.

Supplementary Figures
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Figure S1. Clustering and annotation of integrated adrenal gland snRNA-seq data. a, UMAP representation of 83,468 adrenal gland nuclei integrated between Parse
and 10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per cluster are annotated to the right of the bar plots, and numbers of
nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal development in adrenal gland, with the same color
legend as in a. For consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in adrenal gland.
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Figure S2. Clustering and annotation of integrated left cerebral cortex snRNA-seq data. a, UMAP representation of 112,118 left cerebral cortex nuclei integrated
between Parse and 10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per cluster are annotated to the right of the bar plots,
and numbers of nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal development in cortex, with the same
color legend as in a. For consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in cortex.
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Figure S3. Clustering and annotation of integrated left hippocampus snRNA-seq data. a, UMAP representation of 78,167 left hippocampus nuclei integrated between
Parse and 10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per cluster are annotated to the right of the bar plots, and
numbers of nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal development in hippocampus, with the
same color legend as in a. For consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in hippocampus.
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Figure S4. Clustering and annotation of integrated left hippocampus snRNA-seq data. a, UMAP representation of 78,167 heart nuclei integrated between Parse and
10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per cluster are annotated to the right of the bar plots, and numbers of
nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal development in heart, with the same color legend as
in a. For consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in heart.
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Figure S5. Clustering and annotation of integrated gastrocnemius snRNA-seq data. a, UMAP representation of 69,879 gastrocnemius nuclei integrated between
Parse and 10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per cluster are annotated to the right of the bar plots, and
numbers of nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal development in gastrocnemius, with the
same color legend as in a. For consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in gastrocnemius.
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Figure S6. Regulatory topic enrichment and proportions in adrenal gland cell subtypes. a, Topic-trait correlation in 19 regulatory adrenal topics. b, Structure plots in
adrenal cell subtypes, summarized in above pie charts. Topics AD7, AD9, AD12, and AD6 are specific to adrenal cortex. c, AD19, AD8, and AD18 are specific to adrenal
medulla, while AD15 is specific to Sox10+ progenitor cells. d, AD2 is endothelial-specific and AD3 is adipocyte-specific. AD5 is a general cycling topic enriched in
proliferating cells regardless of subtype. e, Topics AD14 and AD10 are specific to macrophages, and topic AD4 is shared across stromal, fibroblast, and smooth muscle
cells. AD15 is enriched in the adrenal capsule and fibroblasts.
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Figure S7. Regulatory topic enrichment and proportions in left cerebral cortex cell subtypes. a, Topic-trait correlation in 16 regulatory cortex topics. b, Structure plots
in cortex cell subtypes, summarized in above pie charts. CX4 is a general GABAergic topic other than Meis2+ and early GABAergic cells, which are described by a mix of
topics. c, Topics CX1, CX2, CX10, and CX12 are all enriched in various excitatory neuronal subtypes. d, CX9 is enriched in OPC and COP progenitors, while CX7 is
enriched in mature oligodendrocytes. e, CX3 is astrocyte-specific and CX8 is microglia-specific. f, CX5 is enriched in endothelial and pericytes and CX13 is specific to
VLMC (vascular leptomeningeal cells).
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Figure S8. Regulatory topic proportions in left hippocampus cell subtypes. a, Structure plots in hippocampus cell subtypes, summarized in above pie charts. HC8 is
enriched in CA1 and shared across various other glutamatergic subtypes, and HC13 is CA3-specific. b, HC1 is astrocyte-specific, while HC12 is microglia-specific. c, HC6
and HC5 are general GABAergic neuron topics, while the Meis2+ subtype is described by a mix of topics. d, HC11 is enriched in endothelial, pericytes, and VLMC (vascular
leptomeningeal cells), while HC1 is shared in VLMC and ependymal cells.
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Figure S9. Regulatory topic enrichment and proportions in heart subtypes. a, Topic-trait correlation in 17 regulatory heart topics. b, Structure plots in heart cell
subtypes, summarized in above pie charts. Topics HT2, HT11, and HT13 are shared by cardiomyocytes at all developmental stages. c, HT7 and HT14 are enriched in
endothelial cells, while HT9 is enriched in endocardial and lymphatic endothelial cells. d, HT1 is enriched in cardiac fibroblasts at all developmental stages. e, HT8 is specific
to pericytes and one subtype of smooth muscle, while the other smooth muscle subtype is enriched in HT16 and HT1. f,HT3 is the macrophage-specific topic in heart. HT6
is a general cycling topic enriched in proliferating cells regardless of subtype. g, HT12 is specific to epicardial cells. Adipocytes and Schwann cells are made up of several
topics, the largest fraction being HT1 which is also shared with fibroblasts and smooth muscle.
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Figure S10. Regulatory topic enrichment and proportions in gastrocnemius subtypes. a, Topic-trait correlation in 16 regulatory gastrocnemius topics. b, Structure
plots in gastrocnemius cell subtypes, summarized in above pie charts. GC10 is enriched in both macrophages and lymphocytes. c, Topics GC2, GC5, GC6, and GC11 are
shared across mature myofiber subtypes. Most cell participation in type 2B and type 2X is attributed to topic GC2, but type 2X also shares GC6 with type 2A and type 1.
Perinatal myonuclei are described by GC16 and GC11, while GC15 and GC8 are specific to satellite cells. Specialized NMJ (neuromuscular junction) and MTJ
(myotendinous junction) myonuclei have no specific regulatory topic, but share a mix of muscle-enriched topics. d, GC7, GC12, and GC13 are specific to endothelial,
smooth muscle, and Schwann subtypes, respectively. FAP (fibro-adipogenic progenitors) are enriched for GC4 and GC11 which are also timepoint-specific, with GC11
enriched in infants and GC4 specific to adults and juveniles.

30 | bioRχiv Rebboah et al. | ENCODE4 Mouse

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598567doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598567
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S11. cCRE classification by regulatory signature a, Breakdown of 390,146 cCREs >5 RPM in at least 1 pseudobulk cluster in 10x Multiome snATAC-seq data
across all 5 tissues. Most cCREs are classified as dELS (distal enhancer-like signature), CA (chromatin accessible), and pELS (proximal enhancer-like signature). Less than
15% of accessible cCREs are CA-CTCF (chromatin-accessible CTCF), CA-H3K4me3 (chromatin-accessible with promoter-associated histone modification), CA-TF
(chromatin-accessible, TF signal), and TF (TF signal). b, All cCREs are between 150 and 350 bp with an average of 284 bp with consistent distributions across the 8
categories. Therefore, we opted to normalize snATAC-seq quantifications across the cCREs using reads-per-million (RPM).
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Figure S12. Motif enrichment in subtype-specific cCREs across all tissues Out of 765 possible JASPAR motifs, 317 were enriched in at least 1 subtype with an
adjusted p-value ≤ 0.05, enrichment ≥ 1.5, and bulk RNA-seq expression ≥ 5 TPM in at least 1 sample in the tissue.

32 | bioRχiv Rebboah et al. | ENCODE4 Mouse

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598567doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598567
http://creativecommons.org/licenses/by-nc-nd/4.0/

