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Abstract

Mammalian genomes contain millions of regulatory elements that control the complex patterns

of gene expression. Previously, The ENCODE consortium mapped biochemical signals across

many cell types and tissues and integrated these data to develop a Registry of 0.9 million

human and 300 thousand mouse candidate cis-Regulatory Elements (cCREs) annotated with

potential functions1. We have expanded the Registry to include 2.35 million human and 927

thousand mouse cCREs, leveraging new ENCODE datasets and enhanced computational

methods. This expanded Registry covers hundreds of unique cell and tissue types, providing a

comprehensive understanding of gene regulation. Functional characterization data from assays

like STARR-seq, MPRA, CRISPR perturbation, and transgenic mouse assays now cover over

90% of human cCREs, revealing complex regulatory functions. We identified thousands of

novel silencer cCREs and demonstrated their dual enhancer/silencer roles in different cellular

contexts. Integrating the Registry with other ENCODE annotations facilitates genetic variation

interpretation and trait-associated gene identification, exemplified by discovering KLF1 as a

novel causal gene for red blood cell traits. This expanded Registry is a valuable resource for

studying the regulatory genome and its impact on health and disease.

Introduction

Mammalian genomes are extensive repositories of DNA-encoded instructions that control

cellular functions through complex regulatory mechanisms. Central to this regulation are

cis-regulatory elements (CREs), which are non-coding DNA sequences that control the

transcription of nearby genes. Usually associated with open chromatin and specific histone

modifications, CREs contain binding sites for transcription factors and other

chromatin-associated proteins that interact with one another and transcriptional machinery to

regulate gene expression2,3. Understanding the biological contexts and functions of CREs is

essential for deciphering genome function and its impact on human health and disease4–7.
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Over the years, the ENCODE project has made major contributions towards our understanding

of gene regulation by systematically identifying and annotating functional elements across the

human and mouse genomes8–11. Performing tens of thousands of high-throughput assays such

as DNase-seq12,13, ATAC-seq14, RNA-seq15,16, and ChIP-seq for histone modifications17 and

transcription factors18,19, the ENCODE consortium has comprehensively mapped a diverse set

of biochemical signatures and used these signatures to annotate CREs. One major result of

ENCODE Phase 3 was the creation of the ENCODE Registry of candidate cis-Regulatory

Elements (cCREs), a resource that provides insights into the roles of cCREs in gene regulation

and that serves as a powerful aid for researchers to study the genetic basis of complex traits

and diseases.1

In this work, we have significantly expanded the Registry of cCREs to include 2.35 million

human and 927 thousand mouse elements. This expansion leverages new datasets produced

during ENCODE Phase 420 and improved computational methods, making the Registry one of

the most extensive repositories of CREs available. The updated Registry spans hundreds of

unique cell and tissue types, enhancing our understanding of gene regulation across a broad

range of biological contexts.

In addition to an increase in the number of cCREs, the Registry now includes functional

characterization data21 for over 90% of human cCREs from assays such as genome-wide

STARR-seq22,23, MPRA24–26, CRISPR perturbation27,28, and transgenic mouse assays. These

functional assays provide deeper insights into how cCRE sequences impact their function,

highlighting the regulatory complexity within the genome. We have also identified thousands of

candidate silencer cCREs, many of which can function as enhancers in other cellular contexts,

with the majority being novel to this study.

Finally, integrating the updated Registry with other ENCODE annotations facilitates the

interpretation of genetic variation and the identification of trait-associated genes. This

integration has practical implications, as demonstrated by our discovery of KLF1 as a novel

causal gene for red blood cell traits. These advancements underscore the utility of the

ENCODE Registry as an invaluable resource for genomic research, enhancing our ability to

study the regulatory landscape of the genome and its impact on human health and disease.
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Results

The expanded ENCODE Registry comprises 2.35 million human and 927 thousand
mouse cCREs

During ENCODE4, we leveraged new datasets and improved computational methods to

broaden the scope and scale of the Registry of cCREs. The current Registry now encompasses

2,348,854 human cCREs and 926,843 mouse cCREs—a threefold increase compared to the

ENCODE3 Registry, establishing it as one of the most extensive repositories of CREs currently

available (Figure 1, Supplementary Note 1, Supplementary Data 1, 2).

This expansion reflects our incorporation of newly generated ENCODE4 data as well as data

from new types of assays—in total, 5,712 human and 758 mouse experiments (Supplementary

Table 1). In this version of the Registry, we continued to anchor cCREs on nucleosome-sized

representative DNase Hypersensitivity Sites (rDHSs)1 derived from DNase-seq data29,30

(Supplementary Note 1.1). To annotate the plausible biochemical function of a cCRE, we used

ChIP-seq data of two histone modifications (H3K4me3 and H3K27ac, marking active

promoters and enhancers, respectively) and the insulator-binding protein CTCF (Supplementary

Methods). New to this version of the Registry, we also incorporated 2,509 transcription factor

ChIP-seq experiments from human31 and 167 from mouse to define 105,286 human and 15,238

mouse cCREs in regions with low chromatin accessibility (Supplementary Note 1.1,

Supplementary Figure 1, Supplementary Table 1 c, d, Supplementary Table 2). We also

used ATAC-seq data to annotate chromatin accessibility in biosamples lacking DNase-seq

data. Finally, we made technical improvements to our pipeline to define 24,160 human and

40,537 mouse cCREs in recently duplicated genomic regions (Supplementary Note 1.2,

Supplementary Figure 2, Supplementary Table 3, Supplementary Data 3, 4).

The number of human DNase-seq and H3K4me3, H3K27ac, and CTCF ChIP-seq experiments

increased by 2.3 fold from ENCODE3 to ENCODE4. This doubled the number of

biosamples—unique tissues, cell types, and cellular states—represented in the Registry from

839 to 1,679. These 1,679 biosamples were from a diverse array of biological contexts,

covering 42 different human organs and tissues (Extended Data Figure 1a). The majority of
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these biosamples comprise primary cells and tissues, but also include in vitro differentiated

cells, organoids, and cell lines (Extended Data Figure 1b). Annotation of cCREs in such a wide

variety of biosample types is useful for designing and interpreting experiments in more

amenable systems—such as cell lines and organoids—and then evaluating their biological

relevance in the primary biosamples.

Coordinated data production during ENCODE4 led to a nearly seven-fold increase of human

biosamples with all four experiments (DNase, H3K4me3, H3K27ac and CTCF), from 25 in

ENCODE3 to 170 in ENCODE4 (Extended Data Figure 1c). This Core Collection of 170

biosamples (Supplementary Table 1) allows us to thoroughly annotate cCREs across diverse

cell and tissue types. The remaining human biosamples have chromatin accessibility (DNase or

ATAC) data but are only partially covered by ChIP-seq of the other three marks (Partial Data

Collection, with 1154 biosamples) or have ChIP-seq data but lack chromatin accessibility

(Ancillary Data Collection, with 354 biosamples), permitting partial cCRE classification

(Supplementary Note 1.3, Supplementary Table 1).

cCREs are classified into putative functional categories based on biochemical
signatures and genomic context

We previously classified cCREs into putative functional categories based on their genomic

distance from annotated transcription start sites (TSSs) and combinations of biochemical

signals1. Here, we expanded this classification scheme to include eight classes of cCREs

(Figure 1b, c, Supplementary Note 1.4):

● Promoter-like signatures (promoter) must fall within 200 bp of a TSS and have high

chromatin accessibility and H3K4me3 signals.

● TSS-proximal enhancer-like signatures (proximal enhancer) have high chromatin

accessibility and H3K27ac signals and are within 2 kb of an annotated TSS. If they are

within 200 bp of a TSS, they must also have low H3K4me3 signal.

● TSS-distal enhancer-like signatures (distal enhancer) have high chromatin accessibility

and H3K27ac signals and are farther than 2 kb from an annotated TSS.
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● Chromatin accessibility + H3K4me3 (CA-H3K4me3) have high chromatin accessibility

and H3K4me3 signals but low H3K27ac signals and do not fall within 200 bp of a TSS.

● Chromatin accessibility + CTCF (CA-CTCF) have high chromatin accessibility and CTCF

signals but low H3K4me3 and H3K27ac signals.

● Chromatin accessibility + transcription factor (CA-TF) have high chromatin accessibility,

low H3K4me3, H3K27ac, and CTCF signals, and are bound by a transcription factor.

● Chromatin accessibility (CA) have high chromatin accessibility and low H3K4me3,

H3K27ac, and CTCF signals.

● Transcription factor (TF) have low chromatin accessibility, low H3K4me3, H3K27ac, and

CTCF signals and are bound by a transcription factor.

Like the ENCODE3 version of the Registry1, we performed the above cCRE classification

across all cell types (cell type-agnostic) and in specific cell types (Supplementary Note 1.4).

Specifically, our expanded classification scheme resulted in 1,121,741 new cCREs for human

and 478,302 for mouse. These newly included cCREs were enriched for evolutionary

conservation, functional activity, and chromatin accessibility in previously underrepresented

cell types (Supplementary Note 1.5, Supplementary Figure 3a-c, Supplementary Table 4a).

We also compared ENCODE4 cCREs with two recent studies that reported a moderate overlap

between their brain-specific regulatory elements and an earlier version of our Registry32,33. We

observed a large increase in the percentage of overlapping elements, specifically due to cCREs

with high chromatin accessibility in neural cell types and brain tissues (Supplementary Note

1.5, Supplementary Figure 3d,e, Supplementary Table 4b,c). These results demonstrate that

the ENCODE4 Registry is comprehensive while still maintaining biological specificity.

To better understand how our cCRE classification scheme related to DNA sequence, we trained

cell type-specific variational autoencoders on the sequences of the cCREs annotated in three

cell types (Extended Data Figure 2a, Supplementary Note 1.6, Supplementary Figure 4). In

each cell type, promoters and distal enhancers segregated across the first dimension

(Extended Data Figure 2b, Supplementary Figure 4); this dimension strongly correlated with

the percentage of guanine and cytosine (GC) nucleotides of the sequences (R = 0.92,
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Extended Data Figure 2c) and differed significantly between promoters of protein-coding

versus lncRNA genes and among distal enhancers overlapping novel TSSs or expressing

eRNAs (Extended Data Figure 2d). These results suggest that GC content is one of the

primary sequence features differentiating transcribed cCREs and that our current classification

scheme is able to detect such differences.

It is worth noting that the smaller number of mouse cCREs reflects ENCODE’s emphasis on

generating data from human samples. Additionally, because ENCODE4 primarily focused on

measuring chromatin accessibility and gene expression in mouse biosamples, rather than

histone modifications, the mouse Registry contains a higher percentage of CA cCREs (Figure

1c). We estimate that up to 65% of these elements could have been classified as enhancer

cCREs had H3K27ac data been available (Supplementary Note 1.7).

Testing cCRE activity using functional assays

Having defined and annotated the putative functions of cCREs using chromatin signatures, we

aimed to evaluate their functional activities. ENCODE4 tested the activities of millions of

regions in the human genome using four types of functional assays21—genome-wide

STARR-seq assays23,31, massively parallel reporter assays (MPRA)24–26, CRISPR perturbation

assays27,28, and transgenic mouse assays (Fig. 2a). Nearly all of the human cCREs (93%) were

tested by at least one assay in at least one cellular context (Figure 2a, Supplementary Note 2,

Supplementary Table 5). Across all assays, cCREs were much more likely to be functionally

active than non-cCRE genomic regions, and cCREs with active chromatin signatures in a cell

type more frequently tested positive in the same cell type than other cCREs (Supplementary

Figure 5a-f). This cell type-specificity was most dramatic for CRISPR perturbation experiments

that disrupt elements in their native chromatin context (37-fold enrichment, Fisher’s Exact Test,

p < 2.2 × 10−16, Supplementary Figure 5f) compared to methods such as MPRAs that evaluate

element activity episomally (2-fold enrichment, Fisher’s Exact Test, p < 2.2 × 10−16,

Supplementary Figure 5d).
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Among the four types of assays, whole genome STARR-seq had the highest throughput,

testing 2.2 million cCREs; thus, we focused subsequent analyses on this assay. Because the

genomic regions tested by STARR-seq were generated by random shearing, these regions had

varying sizes (up to several thousand base pairs) and could contain multiple cCREs, which are

150-350 base pairs long. To delineate the STARR-seq activity scores (STARR scores) of

individual cCREs, we developed a novel method called CRE-centric Analysis and Prediction of

Reporter Assays (CAPRA). To isolate the impact of neighboring cCREs, we first quantified the

STARR score of a cCRE using the “solo” STARR-seq fragments, which overlap the cCRE in its

entirety and do not overlap any other cCREs (Figure 2b). We then use “double” STARR-seq

fragments, which overlap two neighboring cCREs in their entirety, to assess the interaction

between the cCREs. By first determining fragment counts across the input DNA and the output

RNA libraries, CAPRA calculates the p-value of RNA to DNA ratio for each cCRE using

DESeq234 (see Methods). Due to the strict overlap requirements, solo and double fragments

only compose 8-12% of a STARR-seq library; however, our approach still characterizes

75-87% of the 2.35 million human cCREs in each STARR-seq experiment (Supplementary

Figure 5g, Supplementary Table 5a, Supplementary Data 5).

We first studied cell type-specific functional activity of cCREs by comparing STARR scores for

cCREs in K562 cells vs. HepG2 cells. When we stratified cCREs by their class, we found that

promoter cCREs were more likely to have consistent STARR scores across cell types compared

to distal enhancer cCREs (Supplementary Figure 5h, i). These findings were concordant with

our previous results1 and the general understanding that enhancers tend to be more cell

type-specific than promoters3,35.

To determine what sequence features were responsible for the cell type-specific activity of

enhancer cCREs, we investigated which transcription factor motifs were enriched in the distal

enhancer cCREs with differentially high STARR scores in K562 cells (K562 STARR+) versus

HepG2 cells (HepG2 STARR+) (Figure 2d). Both the K562 and HepG2 STARR+ cCREs were

enriched for cell type-relevant transcription factor motifs and were more likely to be annotated

as enhancers in their respective cell types (Figure 2e, Supplementary Figure 6,

Supplementary Table 6a). K562 STARR+ cCREs were enriched for transcription factors related

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://paperpile.com/c/v96cZh/mdM3n
https://paperpile.com/c/v96cZh/sR9Cj
https://paperpile.com/c/v96cZh/BToT+Vu0O
https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


to hematopoiesis, such as STAT5A/B36, TAL137, and GATA family factors GATA1 and GATA238.

HepG2 STARR+ cCREs were enriched for hepatocyte nuclear factors HNF4A and HNF4G along

with TCF7L2, which is known to co-localize with these transcription factors in HepG239. When

we considered two other cell types with STARR-seq data, HCT116 and MCF-7, STARR+

enhancer cCREs enriched for the respective hematopoietic or hepatocyte transcription factor

motifs were also much more likely to have cell type-specific STARR activity (Extended Data

Figure 3a). This cell type-specific activity was concordant with the expression of these

transcription factors in the corresponding cell types (Extended Data Figure 3b).

We also observed enrichment for two transcription factor motifs in HepG2 STARR+ enhancers

that were initially unexpected, TP53 and GFI1B. HepG2 STARR+ enhancers with TP53 motifs

had low STARR scores in K562, but high STARR scores in HCT116 and MCF-7 (Extended

Data Figure 3a). This is because K562 does not have functional TP53,40 unlike the other three

assayed cell lines41–44. These results underscore the importance of biosample selection, as the

disruption of regulatory mechanisms in a cancer cell line can impact the interpretation of

biological data obtained using that cell line. Additionally, HepG2 STARR+ enhancers with

GFI1B motifs had moderate to high STARR scores in HCT116 and MCF-7 but lower than

baseline activity in K562 (Extended Data Figure 3a). GFI1B is a transcriptional repressor

expressed in erythrocyte progenitors45 and K562 cells (Extended Data Figure 3b). These

results suggest that these genomic regions are repressing transcription in the STARR-seq

assay in K562 cells and that our method can identify elements with repressive or silencing

activities.

In addition to characterizing the activity of individual cCREs, our CAPRA method quantified the

activity of 335,909 pairs of cCREs using whole-genome K562 STARR-seq data

(Supplementary Data 6). Combined activity levels were generally correlated with the averaged

activity of the individual cCREs, and this correlation increased as more stringent filters were

applied to the data (Supplementary Figure 7a-d). Nevertheless, there were notable

exceptions, including cCRE pairs with lower or higher than expected effects. cCRE pairs with

lower than expected activities had lower chromatin accessibility and H3K27ac signals in K562,

compared to other pairs of cCREs (Fisher’s Exact Tests, p < 1.7 × 10−5, Supplementary Table
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6b), suggesting that these regions are less likely to be active in their native chromatin context

(Supplementary Note 2.3, Supplementary Figure 7e, f). cCREs that had a dominant

repressive effect on the activity of their partner cCREs were enriched in motifs for

transcriptional repressors, such as GFI1B (Fisher's Exact Test, p = 6.5 × 10−3, Supplementary

Table 6c). A small fraction of cCRE pairs (6-15%, depending on stringency of filtering)

exhibited higher than expected STARR activity. For example, three neighboring enhancer

cCREs in an intron of the MTNR1A gene have moderate to low STARR scores when tested

separately in K562 cells (0.01, 0.39, and 0.34 for EH38E3620077, EH38E3620078, and

EH38E3620079, respectively, Figure 2f, g). When tested together, the first two maintained

moderate activity (0.38) while the last two had very high activity (1.62, p = 0.03, Figure 2g). To

investigate this cooperativity, we analyzed the cCRE sequences and determined that

EH38E3620078 and EH38E3620079 overlapped motifs for more K562 transcription factors

compared to EH38E3620077 (49 and 46, respectively, compared to 27, Figure 2h,

Supplementary Table 6d). Additionally, EH38E3620078 and EH38E3620079 overlap distinct

motifs from one another, with EH38E3620078 overlapping AT-rich motifs (STAT, FOX, and

BACH families) and EH38E3620079 overlapping GC-rich motifs (KLF and SP families, Figure

2h). These findings also hold in native chromatin context as supported by transcription factor

ChIP-seq data (Supplementary Table 6e). We hypothesize that the higher than expected

cooperativity between EH38E3620078 and EH38E3620079 could be attributed to the increased

diversity of transcription factor binding. While our power to detect such events is currently

limited by the STARR-seq library construction—as there are far fewer double than single

fragments—in the future, we can design experiments to include a wider range of fragment

lengths to further study combinatorial effects on a larger number of elements.

Silencers and dual-function elements among REST-Bound cCREs

Silencers are cis-regulatory elements that repress the transcription of target genes46,47. Several

studies have identified human silencers using chromatin and functional data48–53; however,

there is little overlap among these collections (Supplementary Table 7a, b). We aimed to

identify cCREs that act as silencers by integrating ENCODE data. We started with the

well-studied repressor transcription factor REST (Restrictive Element-1 Silencing Transcription
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factor), which is only expressed in non-neuronal cell types and binds to a sequence motif

(Figure 3a) in neuron-restrictive silencer elements (NRSEs) to repress neuronal genes in

non-neuronal cells54–56. We defined candidate NRSEs, which we refer to as REST+ cCREs, by

selecting all non-promoter cCREs that contained a REST motif and overlapped the summits of

at least five REST ChIP-seq peaks (Supplementary Note 3.1, Supplementary Table 7c). This

resulted in 5,850 REST+ cCREs, spanning all cCRE classes, including 2,516 distal enhancer

and 789 CA-TF cCREs (1.9-fold depletion and 9.1-fold enrichment, respectively, chi-square

test, p < 2.2 × 10−16, Figure 3b, c, Supplementary Table 7d). We then characterized the

functional activity of REST+ cCREs using two complementary functional characterization

assays—transgenic mouse enhancer assays (Supplementary Table 7e) and whole genome

STARR-seq—to assess their enhancer and silencer activities, respectively (Figure 3d).

Over half of the regions overlapping REST+ distal enhancer cCREs were active in the

transgenic mouse enhancer assay—a validation rate as high as regions overlapping distal

enhancer cCREs lacking REST binding (REST–, 55% for both sets, Figure 3e, f,

Supplementary Figure 8a). Compared with the REST– subset, the REST+ subset of distal

enhancer cCREs were more likely to be active in brain tissues (2.1-fold enrichment, Fisher’s

Exact Test p = 0.04, Figure 3g, Supplementary Table 7f), which was further supported by

enrichment for H3K27ac signals in neuron-related biosamples (Supplementary Note 3.2,

Supplementary Table 7g, h). In K562 cells, these REST+ distal enhancer cCREs had lower

than expected STARR scores (median = –0.10, compared with –0.02 for all cCREs, Wilcoxon

test, p < 2.2 × 10−16, Figure 3h, Supplementary Figure 8b), suggesting they have moderate

silencer activities in this cell line. Additionally, genes near REST+ distal enhancer cCREs had

lower expression levels than genes near cCREs inactive in K562 cells (median TPM of 0.7 vs

2.4, Wilcoxon test, p = 3.0 × 10−6, Supplementary Figure 8c). We also observed similar activity

patterns for a subset of proximal enhancer cCREs—enhancer activity in the brain tissues of

transgenic mice and lower than expected STARR scores and gene expression in K562 cells

(Supplementary Figure 8a-c). Collectively, these results indicate that REST+ enhancer cCREs

have dual functions, acting as enhancers when not bound by REST in neurons and acting as

silencers when bound by REST in other cell types.
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Of the 11 regions overlapping REST+ CA-TF cCREs that were tested in the transgenic mouse

enhancer assay, none were active, in sharp contrast with the 64% validation rate for REST–

CA-TF cCREs (Fisher’s Exact Test, p = 5.5 × 10−4, Figure 3f, Supplementary Figure 8a). In

K562 cells, REST+ CA-TF cCREs had very low STARR scores, even lower than the REST+

distal enhancer cCREs (median = –0.40, Wilcoxon test, p < 2.2 × 10−16, Figure 3h,

Supplementary Figure 8b). Genes near REST+ CA-TF cCREs had low expression in K562 cells

with a median TPM of 0.1 (Wilcoxon test, p < 2.2 × 10−16, Supplementary Figure 8c). These

results suggest that REST+ CA-TF cCREs act as strong silencers in REST-bound cell types

such as K562. We observed similar activity patterns for the CA-H3K4me3, CA-CTCF, and TF

classes of REST+ cCREs—i.e., low STARR scores and low expression of nearby

genes—suggesting that these elements also primarily function as silencers (Supplementary

Figure 8a-c).

We illustrate the two types of REST+ cCREs using the enhancer/silencer cCRE EH38E2130108

(Extended Data Figure 4a) and the silencer cCRE EH38E4127779 (Extended Data Figure 4b),

both with high REST ChIP-seq signals, moderate DNase signals, and low STARR signals (−0.64

and -0.94, respectively) in K562 cells (Extended Data Figure 4c,d). Only EH38E2130108 had

enhancer activity, specifically in forebrain, midbrain, and hindbrain mouse tissues of transgenic

mice (Extended Data Figure 4e,f), which was further supported by high H3K27ac and DNase

signals in human in vitro-derived neurons. On the other hand, EH38E4127779 lacked enhancer

activity in transgenic mice and enhancer signatures in neurons. Neither these example REST+

cCREs nor REST+ cCREs as a whole were enriched for any specific repressive chromatin

signatures such as H3K9me3 or H3K27me3 in K562 cells (Supplementary Table 7i).

Annotation of silencer elements using STARR-seq data

Building on our findings with REST+ cCREs, we extended our analysis to more broadly

annotate silencer elements using STARR-seq data. This approach enabled us to identify

additional silencer cCREs beyond NRSEs that have significant repression activity in K562 cells.

We identified 545 stringent (p < 0.01) and 5,396 robust (p < 0.05) STARR-silencer cCREs in

K562, 9% and 5% of which were also REST+ cCREs, respectively (Extended Data Figure 5a,

b, Supplementary Table 8a). Like REST+ cCREs, STARR-silencer cCREs were enriched for

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


CA-TF, TF, CA-CTCF and CA-H3K4me3 cCREs (Extended Data Figure 5c), again highlighting

the importance of including these new categories in our expanded cCRE classification scheme.

Similar to genes near REST+ cCREs, genes located near STARR-silencer cCREs had lower

expression levels than genes near cCREs with active chromatin signatures in K562 or inactive

cCREs (median TPMs of 0.5 and 1.4 for stringent and robust STARR-silencer cCREs

respectively, pairwise Wilcoxon test with FDR correction, p < 6.6 × 10−4, Supplementary

Figure 8c). STARR-silencer cCREs were also enriched for motifs for transcription factor GFI1B

(> 2.6-fold enrichment, p < 2.2 × 10−16, Supplementary Table 8b), the same repressor we

identified in anti-cooperative cCRE pairs described above. In native chromatin context,

STARR-silencer cCREs were enriched for ChIP-seq peaks of six transcription factors and

chromatin remodelers including SETDB1, TRIM28, MIER1, ZNF146, and ZNF280A, in addition

to REST (Supplementary Table 8c). Distinct groups of STARR-silencer cCREs emerged when

clustered by the binding of these six proteins, suggesting sub-classes of silencer elements

(Supplementary Figure 8d). Despite the enrichment for chromatin remodeling factors, none of

the STARR-silencer cCRE groups were enriched for repressive chromatin signatures in K562

cells; they were only depleted for active histone marks (Supplementary Table 8d).

To assess STARR-silencer cCRE activity in native chromatin context, we integrated results from

K562 CRISPRi-FlowFISH experiments targeting 18 genes across four genomic loci57. Of the

734 perturbed cCREs, two were STARR-silencer cCREs (Supplementary Table 8e), with

EH38E4193243 being one of them. This cCRE is both a STARR-silencer (STARR score of −1.0,

p = 0.04) and a REST+ enhancer/silencer. It is a proximal enhancer for retbindin (RTBDN), a

gene preferentially expressed in the retina58. It has active enhancer signatures exclusively in

WERI-Rb-1, a retinoblastoma cell line, suggesting that this cCRE has highly cell type-specific

enhancer activity. In other biosamples (including K562, where CRISPRi-FlowFISH was

performed), the cCRE is bound by REST and RTBDN is not expressed.

CRISPRi perturbation of EH38E4193243 resulted in increased expression of PRDX2

(Supplementary Note 4.1). Though this cCRE lies 30 kb upstream of PRDX2, RNAPII and

CTCF ChIA-PET interactions demonstrate that this cCRE is proximal to PRDX2 in three
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dimensional space (Extended Data Figure 5d). Perturbing the anchors of these interactions

also resulted in a similar increase in PRDX2 expression (Supplementary Note 4.1). These

results suggest that silencers can impact the expression of multiple genes. We can use our

annotated STARR-silencer and REST+ silencer cCREs to aid in future CRISPRi-FlowFISH study

design to further investigate such long-range silencer interactions and validate additional

silencer cCREs in their native chromatin contexts.

Novel silencer cCREs have unique chromatin accessibility patterns

Our collection of 9,972 silencer cCREs—comprising both types of REST+ cCREs and

STARR-silencer cCREs—only overlap a subset of previously-annotated silencers48–53, with the

highest concordance with silencers identified by Jayavelu et al., who also used a STARR-based

method (Supplementary Note 4.2, Supplementary Table 7a). For regions identified by both

studies, 93% of silencer cCREs were classified as silencers by Jayavelu et al. (2.3-fold

enrichment, Fisher’s Exact Test, p < 2.2 × 10−16, Extended Data Figure 6a). However, Jayavelu

et al. only tested 3% of our silencer cCREs in their assay, suggesting that we have identified

many novel silencers (Extended Data Figure 6b).

A major distinction of our silencer annotation lies in our cCRE-based approach. Previous

annotations typically centered on open chromatin regions within the specific cell type where

silencer activity was assayed or in a limited number of biosamples. Only 14% of our silencer

cCREs show high chromatin accessibility in K562 cells (Extended Data Figure 6c,

Supplementary Note 4.3). Instead, silencer cCREs have high chromatin accessibility in

early-stage cell types—embryonic stem cells, induced pluripotent stem cells, and in

vitro-derived progenitor cells—and fetal tissues (Extended Data Figure 6d-f, Supplementary

Note 4.3, Supplementary Table 8f, g). Therefore, by using chromatin accessibility

measurements in a comprehensive collection of biosamples, we are able to identify silencer

elements that would otherwise be missed.
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Integrating the Registry of cCREs with other ENCODE Encyclopedia annotations
aids in identifying disease-associated genes

The ENCODE Encyclopedia encompasses a comprehensive set of sequence, element, gene,

and interaction annotations20. The Registry of cCREs, one component of the Encyclopedia,

overlaps the vast majority of these other annotations and can serve as an anchor for

comparative and integrative analyses (Supplementary Note 5, Supplementary Tables 9-11),

allowing researchers to study complex loci and better understand transcriptional regulation. To

aid in such investigations, we previously developed the web-based search and visualization

tool SCREEN (Search candidate cis-Regulatory Elements by ENCODE) for users to query,

explore, and visualize cCREs and their underlying data (Figure 1, Supplementary Figure 9).

During ENCODE4, we extensively re-engineered SCREEN to improve performance and

usability (Supplementary Note 6).

The Registry of cCREs and SCREEN are particularly useful for EMHMRK XLI MRXIVTVIXEXMSR ERH

TVMSVMXM^EXMSR SJ phenotype-associated genetic variants. Genome-wide association studies

(GWAS) have linked over 97,000 genetic variants with hundreds of traits and diseases59.

Several groups, including ours, have demonstrated that regulatory element annotations can

identify phenotype-relevant cell types and pinpoint causal variants in associated loci1,60–68. With

our updated Registry of cCREs, we can expand the biological scope and accuracy of these

annotations, facilitating the identification of novel trait-associated genes and genetic variants.

To demonstrate, we used the Registry of cCREs and SCREEN annotations to annotate and

dissect the RTBDN-MAST1 locus, which was previously associated with red blood cell traits by

three independent studies (Figure 4a, Extended Data Figure 7a). Variants associated with red

blood cell traits are enriched in cCREs active in K562 cells (Figure 4b, Supplementary Table

12a), which have similar properties and proteomic profiles to early-stage erythrocytes.69,70

Therefore, we prioritized K562-specific cCREs and Encyclopedia annotations to identify the

causal gene in this region.

Nine K562 cCREs overlapped SNPs in high linkage disequilibrium (R2 > 0.7) with at least one

reported red blood cell trait GWAS variant in this locus (referred to as lead variants; Figure 4a,
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Extended Data Figure 7b). To narrow down possible causal genes, we selected all genes that

were connected to one of these cCREs in K562 cells using RNAPII and CTCF ChIA-PET links,

intact Hi-C loops, and CRISPRi-FlowFISH perturbations. We also included the closest gene by

linear distance to each of these nine cCREs along with all the original genes reported by each

of the GWAS. In total, this resulted in a list of 12 potential causal genes (Extended Data Figure

7b, Supplementary Table 12b).

Of these candidate genes, we predicted KLF1 to be the likely causal gene based on its known

function and expression pattern (Figure 4c, Extended Data Figure 7c, Supplementary Table

12b). KLF1 is a hematopoietic-specific transcription factor that regulates erythroid

differentiation by inducing expression of beta-globin and other erythroid-specific genes.58,71 Of

the 12 candidate genes, KLF1 is the only gene with K562-specific expression, i.e., high

expression in K562 and low expression in all other surveyed cell types (Figure 4c, Extended

Data Figure 7c, Supplementary Table 12c). We expected a locus that is solely associated

with red blood cell traits and no other phenotypes to be associated with a cell type-specific

gene. These results support KLF1 as the gene associated with red blood cell traits, a novel

finding for this locus.

Although additional validation is needed to confirm exactly which variant or variants in the

locus directly impact KLF1 expression, we can use the Registry of cCREs to prioritize

candidate variants for future testing. For example, rs2290688, which overlaps CA-CTCF cCRE

EH38E3291318, is a likely candidate, as it is in high linkage disequilibrium with all three lead

GWAS variants (Extended Data Figure 7b), and perturbing EH38E3291318 via

CRISPRi-FlowFISH resulted in a decrease in KLF1 expression (Supplementary Note 7.1).

EH38E3291318 is a major anchor for CTCF-mediated 3D chromatin interactions; it overlaps

CTCF ChIA-PET links in 100% of surveyed biosamples and Hi-C loops in 82% of surveyed

biosamples, and also has high CTCF signal in 99% of surveyed biosamples (Supplementary

Table 12d-f). We hypothesize that rs2290688 impacts 3D interactions at this locus, resulting in

a rewiring of the regulatory landscape, ultimately impacting KLF1 expression. Other potential

variants for future validation include rs2280742, which overlaps a myeloid enhancer cCRE near

KLF1, and rs2072597, a benign missense variant in KLF1 (Supplementary Note 7.2,
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Supplementary Figure 10, Supplementary Table 12g). Using the Registry of cCREs, we are

able to narrow a list of 63 high linkage disequilibrium variants down to a prioritized set of just a

few likely candidates. In summary, our analysis of the RTBDN-MAST1 locus revealed KLF1 as a

novel causal gene associated with red blood cell traits and demonstrates how the Registry of

cCREs, coupled with other ENCODE Encyclopedia annotations, can improve our ability to

annotate complex loci and prioritize phenotype-relevant variants.

Discussion

The expanded Registry of cCREs offers a powerful tool for dissecting the intricate mechanisms

of transcriptional regulation across diverse biological contexts. By integrating comprehensive

data from functional assays and ENCODE annotations, the Registry enables researchers to

study the interplay between cCREs and their impact on gene expression, providing deeper

insights into the regulatory logic that governs cellular states and contributes to disease risk.

A key innovation of this updated Registry is its integration with functional characterization

datasets, including STARR-seq, MPRA, and CRISPR perturbation assays. These

high-throughput methods allow for the direct testing of sequence-driven regulatory potential,

facilitating the identification of sequence features that drive regulatory activity. However, there

are inherent limitations; for instance, episomal assays like STARR-seq and MPRA may not fully

recapitulate the native chromatin context, leading to discrepancies in regulatory activity.

Despite this, functional assays remain invaluable for large-scale screening and can guide more

detailed, context-specific investigations.

Our findings have several important implications for future research. First, the observed

cooperativity between neighboring cCREs suggests that future functional experiments should

account for potential interactions between regulatory elements, as these interactions may play

a crucial role in gene regulation. Second, elements with dual functions—such as REST+

cCREs, which act as enhancers in neurons and silencers in non-neuronal cells—underscore the

need to study regulatory elements across multiple cellular contexts to fully understand their

functional roles. Additionally, while cancer cell lines like K562 are commonly used for
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epigenomic studies, their aberrant gene expression and chromatin landscapes necessitate

careful interpretation, especially when generalizing findings to other biological systems.

A significant outcome of our study is the identification and characterization of silencer

elements, including those bound by the repressive transcription factor REST and exhibiting

repressive activity in STARR-seq assays. Many of these silencers were previously overlooked

due to their lower chromatin accessibility in the cell types where they function. While we have

identified thousands of novel silencers, our current methods capture only certain subclasses

with independent, episomal activities. A more comprehensive understanding will require the

development of additional functional assays that can identify silencers operating within

complex chromatin environments and context-dependent manners.

The ongoing development of the Registry of cCREs is essential for advancing the field of gene

regulation. Future efforts should aim to integrate more comprehensive datasets, particularly

those from single-cell assays and underrepresented tissue types, to enhance the resolution of

regulatory maps. Additionally, understanding how cCREs interact with each other and with

other genomic elements will be crucial for constructing detailed regulatory networks governing

gene expression.

In conclusion, our study highlights the utility of the expanded Registry of cCREs as a resource

for identifying, characterizing, and understanding complex regulatory loci. With its broad

biological scope, detailed annotations, and integration with functional data, the Registry

provides a valuable framework for studying CREs across various biological contexts.

Continued expansion and refinement of this resource will drive the discovery of novel

regulatory mechanisms and enhance our understanding of their implications in health and

disease.

Methods

The Registry of cCREs

Anchoring cCREs
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We anchored cCREs on two classes of elements: representative DNase Hypersensitivity Sites

(rDHS) and transcription factor clusters. To annotate rDHSs, we refined and filtered DHS calls

across biosamples and then iteratively clustered and selected the strongest DHS as previously

described1. To annotate transcription factor clusters, we downloaded peak BED files for all

transcription factor ChIP-seq experiments from the ENCODE portal with a FRIP score > 0.003.

For each experiment, we used the “preferred default” peak file and resized peaks smaller than

150 bp and peaks larger than 350 bp to 150 and 350 bp, respectively, to match the cCRE size

distribution. Then, using the same interactive clustering and selection process described

above, we identified representative transcription factor peaks for each cluster. To complement

our rDHS anchors, we selected all transcription factor clusters representing at least five

experiments that did not overlap an rDHS. For each anchor, we then calculated the Z-scores of

the log-transformed signal for each DNase within a biosample to normalize across datasets.

cCREs were defined as regions with high DNase max-Z (>1.64) or overlap a transcription factor

cluster.

Relevant scripts: 0_Call-DHSs.sh

1_Process-DHSs.sh

2_Create-rDHSs.sh

3_Curate-TF-Clusters.sh

4_Calculate-Signal-Zscores.sh

5_Determine-Max-Zscores.sh

Classifying cCREs

We classified cCREs into eight classes by analyzing DNase-seq, H3K4me3, H3K27ac, and

CTCF ChIP-seq signals and transcription factor binding across biosamples. For each cCRE, we

calculated the Z-scores of the log-transformed signal for each mark within a biosample to

normalize across datasets. The maximum Z-score (max-Z) for each mark was determined

across all biosamples. Based on combinations of high or low signals for these marks, their

genomic distance from annotated transcription start sites, and overlap with transcription factor

clusters, cCREs were categorized into promoter-like, enhancer-like (TSS-proximal or distal),
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CA-H3K4me3, CA-CTCF, CA-TF, CA, or TF classes. Classifications were performed both cell

type-agnostically and in specific biosamples, following previously described methods.

Relevant scripts: 6_Classify-cCREs.sh

7_Call-Cell-Type-Specific.sh

Gene annotations

Unless otherwise stated, all analyses used GENCODE V40 basic gene annotations for human

and GENCODE M25 basic annotations for mouse. ENCODE RNA-seq data was uniformly

processed by the ENCODE DCC using GENCODE V29 comprehensive for human and

GENCODE M21 comprehensive for mouse.

Estimating the number of mouse enhancer cCREs

To estimate the upper bound of the number of possible “missing” mouse enhancer cCREs, we

subtracted the number of TSS distal CA cCREs annotated in biosamples with both DNase and

H3K27ac data from the total number of annotated distal CA cCREs. This left only CA cCREs in

biosamples lacking H3K27ac data which have the potential to be classified as enhancer cCREs

if H3K27ac were profiled in those biosamples.

Relevant scripts: Figure-1c.Estimate-Mouse-Enhancers.sh

cCRE sequence features

Variational Autoencoder

We analyzed cCREs classified as active in three cell lines—K562, HepG2, and

HCT116—focusing on promoters, proximal and distal enhancers, and CA-H3K4me3 elements

for each respective cell type. Each cCRE was adjusted to a fixed width of 300 bp, and its

sequence was represented using one-hot encoding. A cell type-specific variational

autoencoder (VAE) was trained for each cell type, utilizing a ten-dimensional latent space. The

encoder architecture included a convolutional layer, max pooling, flattening, and a fully

connected dense layer, while the decoder consisted of dense, reshape, upsampling, and

convolutional layers. Training was performed for 25 epochs using Adam optimization,
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implemented in Keras/TensorFlow. After training, the mean values of the latent dimensions for

each cCRE were projected into two dimensions using UMAP with 100 nearest neighbors.

Relevant scripts: Jupyter Notebooks

GC content

For each cCRE we calculated its GC content by counting the number of “G” and “C”

nucleotides that appear in its sequence and dividing by the total length of the cCRE

Relevant scripts: calculate_CGdinucleotide.py

Transcription factor motif overlap

We scanned cCREs for HOCOMOCO v11 motifs72 using FIMO73 with the default settings and

the --text parameter.

Functional Characterization Data

Whole genome STARR-seq

For peak-based analyses, we downloaded BED peak files from the ENCODE portal and

intersected them with the Registry of cCREs using BEDTools74 (Supplementary Table 5a). For

enrichment analysis (Supplementary Figure 5ab), we intersected peaks (ENCFF454ZKK) from

experiment ENCSR661FOW with cCREs active in K562, all other cCREs and non-cCRE

size-matched genomic regions (generated using the bedtools random function). For

fragment-based analyses, we downloaded BAM files from the ENCODE portal and processed

them with the CAPRA pipeline (detailed below).

Relevant scripts: Supplementary-Table-5a.STARR-Peak-Summary.sh

Supplementary-Figure-5ace.FCC-Positive-Overlap.sh

Supplementary-Figure-5bdf.FCC-Positive-Overlap.sh

Massively parallel reporter assays (MPRA)
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For each MPRA experiment we downloaded “element quantification” files from the ENCODE

portal. If element coordinates were on the hg19 genome, we lifted coordinates to the GRCh38

genome using the UCSC liftOver tool75. We stratified tested regions as to whether they

completely overlapped a cCRE (bedtools -f 1 flag), partially overlapped a cCRE, or did not

overlap any cCRE (bedtools -v flag). We considered all tested regions with a log2 fold

enrichment greater than one as active. We calculated activity enrichment for each group

against a baseline activity of all tested regions.

For enrichment analysis (Supplementary Figure 5c,d), we intersected tested regions

(ENCFF677CJZ) from experiment ENCSR653LWA with cCREs active in K562, all other cCREs

and non-cCRE size-matched genomic regions (generated using the bedtools random function).

Relevant scripts: Supplementary-Table-5b.MPRA-Summary.sh

Supplementary-Figure-5ace.FCC-Positive-Overlap.sh

Supplementary-Figure-5bdf.FCC-Positive-Overlap.sh

CRISPR perturbation screens

For CRISPR perturbation experiments (Supplementary Table 5c), we intersected coordinates

of CRISPR guide RNAs with cCREs and calculated per-cCRE counts for input libraries and

output measurements. We used DESeq2 to calculate cCREs with significant depletion or

overrepresentation depending on the exact assay.

Relevant scripts: Supplementary-Table-5c.CRISPR-gRNA-Overlap.sh

CRISPRi-FlowFISH

For PrimeFlow readout experiments generated by the Engreitz lab57, we downloaded element

quantification files from the ENCODE portal (Supplementary Table 5d). We lifted region

coordinates to the GRCh38 genome using UCSC liftOver75 and intersected them with cCREs

using BEDTools74.
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For HCR-FlowFISH readout experiments generated by the Sabeti lab, we downloaded CASA

elements27 and intersected them with cCREs using BEDTools. We used these elements for

enrichment analysis (Supplementary Figure 5ef), where CASA elements were intersected with

with cCREs active in K562, all other cCREs and non-cCRE size-matched genomic regions

(generated using the BEDTools random function).

Relevant scripts: Supplementary-Table-5d.CRISPRi-FlowFISH-Overlap.sh

Supplementary-Figure-5ace.FCC-Positive-Overlap.sh

Supplementary-Figure-5bdf.FCC-Positive-Overlap.sh

CAPRA quantifications

Pipeline

Using BEDtools74, the first step of the pipeline converts BAM files into fragment BED files for

both the input DNA and output RNA fragments. Next, for each fragment BED file, fragments are

intersected with cCREs. Fragments that overlap a single cCRE in its entirety are counted in the

“solo” quantifications. Fragments that overlap two cCREs in their entirety are counted in the

“double” quantifications. Fragments that partially overlap one or more cCREs are excluded.

Quantifications for input DNA and output RNA fragments (including multiple replicates when

available) are concatenated into a matrix for each quantification type—e.g. solo and double.

Quantification matrices are processed by DESeq2 to identify cCRE with higher than expected

RNA counts (denoting enhancer activity) or lower than expected RNA counts (denoting silencer

activity).

GitHub Repo: https://github.com/Moore-Lab-UMass/CAPRA

Cell type-specific activity

Using the solo fragment STARR scores (normalized log2 fold enrichment of RNA over DNA)

calculated by CAPRA we defined K562+ and HepG2 + STARR distal enhancers as follows:

● K562+ STARR distal enhancers: K562 STARR score > 0 AND K562 STARR score >

HepG2 STARR score +1
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● HepG2+ STARR distal enhancers: HepG2 STARR score > 0 AND HepG2 STARR score >

K562 STARR score +1

Relevant scripts: Figure-2d.STARR-Cross-Cell-dELS.sh

Transcription factor enrichment

Using the HOCOMOCO motif sites identified by FIMO (see above) we calculated the number of

K562+ and HepG2+ STARR distal enhancers that overlap a motif for each transcription factor.

We considered all transcription factors with greater than five transcripts per million (TPM) in

either K562 or HepG2 (N = 234). We compared motif overlap between the two cell types using

Fisher’s Exact test with FDR correction (Supplementary Table 6a) and visualized the top five

most enriched transcription factor motifs in each cell type that appear in at least 10% of the

respective K562+ or HepG2+ STARR distal enhancers (Figure 2e).

Similar analysis was performed to look for motif enrichment in negative combinatorial pairs of

cCREs. We selected all cCRE pairs meeting the following requirements (N = 1,275):

● One cCRE of the pair had independent STARR activity with a positive solo STARR score

and p < 0.05

● The other cCRE of the pair had a negative solo STARR score

● The double STARR score of the pair was negative

We compared the overlap of motifs between cCREs with the positive and negative solo STARR

scores, considering all transcription factors expressed in K562 (TPM > 5, N = 181) and using

Fisher’s Exact test with FDR correction (Supplementary Table 6c).

Relevant scripts: Figure-2e.CTS-STARR-TF-Motif.sh

Supplementary-Table-6c.Repressive-Dual-cCRE-Motif-Enrichment.sh

Silencer cCREs

Defining REST+ cCREs

Using BEDTools74, we intersected cCREs with the summits of ENCODE REST ChIP-seq peaks

(Supplementary Table 7c) and selected all cCREs that overlapped the summits of at least five
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peaks. We then selected all cCREs that overlapped at least one REST motif site from

FactorBook76 (Supplementary Table 7c). We then filtered out promoter cCREs

(Supplementary Note 3.1) resulting in a total of 5,850 REST+ cCREs.

Relevant scripts: Figure-3a.Curate-REST-cCREs.sh

Testing REST+ regions with transgenic mouse enhancer assays

To supplement previously tested regions in the VISTA database, we performed transgenic

mouse enhancer assay experiments for 26 REST+ regions (Supplementary Table 7e). These

regions were conserved between mouse and human and had evidence of REST binding (i.e.,

ChIP-seq peaks) in both species. Nine of these regions overlapped REST+ enhancer/silencer

cCREs, 15 overlapped REST+ silencer cCREs and 2 overlapped cCREs that overlapped REST

ChIP-seq peaks but were not included in our REST+ silencer sets (Supplementary Table 7e).

The transgenic mouse assays were conducted using the FVB/NCrl strain of Mus musculus

(Charles River) as previously described77. Candidate regions were amplified via PCR and

inserted into a plasmid containing a minimal Hsp68 promoter and a lacZ reporter gene. The

resulting constructs were injected into fertilized mouse eggs, which were then implanted into

surrogate mothers. Embryos were harvested at embryonic day 11.5 (E11.5) and analyzed for

β-galactosidase activity. Regions were classified as active enhancers if reproducible staining

was observed in the same tissue in at least three embryos. Regions were considered inactive if

no consistent staining was detected, provided that at least five embryos with transgene

insertions were analyzed.

Overlap of REST+ cCREs with VISTA enhancers

We downloaded the coordinates of 1,947 tested regions from the VISTA Enhancer Database

(available as of April 22, 2023), which included the aforementioned 26 regions, and lifted the

coordinates of these regions to the GRCh38 genome using UCSC liftOver75. We then

intersected VISTA regions with REST+ cCREs using BEDTools intersect, calculating the fraction

of tested regions with positive activity. All analysis was performed relative to the number of

unique VISTA regions and we used Fisher’s exact test to calculate statistical significance. For
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distal enhancer cCREs, we calculated enrichment of activity in specific tissues using Fisher’s

exact test by comparing the activity of regions overlapping REST+ distal enhancer cCREs

versus REST- distal enhancer cCREs.

Relevant scripts: Figure-3g.Supplementary-Table-7e.REST-Silencer-VISTA-Enrichment.sh

Defining STARR-silencer cCREs

Using STARR scores calculated by CAPRA from ENCSR661FOW, we annotated all cCREs with

a negative STARR score and p < 0.01 as stringent STARR-silencers and all cCREs with a

negative STARR score and p < 0.05 as robust STARR-silencers (Supplementary Table 8a).

Enrichment in chromatin signatures

For each biosample with DNase data (N = 1,325, Supplementary Table 8f) we calculated the

fraction of silencer cCREs with high signal (z-score > 1.64, Extended Data Figure 6d). To

determine enrichment, we calculated the log2 fold enrichment of the fraction of silencer cCREs

over the fraction of all cCREs with high DNase signal. For a subset of silencer cCREs, REST+

silencer cCREs, we compare the enrichment of chromatin accessibility between fetal and adult

biosamples from the same tissue or organ (e.g. muscle, lung, kidney, and brain,

Supplementary Table 8g). Statistical significance was calculated using a Wilcoxon test.

Relevant scripts: Supplementary-Table-8f.Silencer-DNase-Enrichment.sh

We also intersected silencer cCREs with histone mark peaks from K562 cells (Supplementary

Table 7h,8d) using BEDTools intersect. We downloaded histone mark peaks directly from the

ENCODE portal. For REST+ cCREs, we compared peak overlap with cCRE active and inactive

in K562, respectively. For stringent and robust STARR-silencers we compared peak overlap

with cCREs with positive STARR scores and neutral STARR scores. We calculated p-values

using Fisher’s Exact test with FDR correction.

Relevant scripts: Supplementary-Table-7h.REST-cCRE-Histone-Enrichment.sh

Supplementary-Table-8d.STARR-Silencer-Histone-Enrichment.sh
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Overlap with previous silencer collections

We downloaded K562 silencers from four previous studies and formatted them into BED files.

This included elements from Supplemental Table 2 from Huan et al.48, Supplementary Data 2

from Jayavelu et al.49, Supplementary Table 1 from Pang et al.50, and Supplementary Data 1

from Cai et al.52. When necessary, region coordinates were lifted to the GRCh38 genome using

UCSC liftOver75. We intersected each collection with the Registry of cCREs using BEDTools74.

We also compared silencer calls between each study by calculating the overlap coefficient.

Relevant scripts: Supplementary-Table-7a.Silencer-Comparison-cCRE.sh

Supplementary-Table-7b.Silencer-Comparison.sh

Expression of nearby genes

Using BEDTools74 we identified the closest GENCODE annotated protein coding gene for each

cCRE as measured by linear distance to the nearest TSS. Using gene quantifications in K562

(ENCFF421TJX, available on the ENCODE portal), we extracted transcripts per million (TPM)

quantifications for each gene and stratified by cCRE class/group.

Relevant scripts: Supplementary-Figure-8c.Silencer-Gene-Expression.sh

Dissecting GWAS loci

VESPA pipeline

As previously described1, the VESPA pipeline takes lead variants reported by GWAS and

generates a set of matched controls based on variant minor allele frequency and genomic

context. For both sets of GWAS and control variants, VESPA then retrieves variants in high

linkage disequilibrium (LD, R2>0.7) based on study population, creating “LD blocks”. VESPA

then intersects variants with cCREs. For studies with a sufficient number of LD blocks (at least

25 lead variants), we can calculate cell type/tissue enrichment by subsetting cCREs based on

activity in specific biosamples and comparing overlap between GWAS and control variants,

accounting for LD by only counting each LD block once per intersection. For this study, we

used H3K27ac signals across 562 biosamples. In total, we curated variants from 3,751 unique
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trait-study combinations, 396 of which also have biosample recommendations, the results of

which are available on SCREEN.

GitHub Repo: https://github.com/Moore-Lab-UMass/VESPA

Candidate GWAS genes

We identified candidate GWAS genes using three complementary approaches:

● Closest gene: Using BEDTools closest74, we identified the closest gene (either protein

coding or non-coding) to each candidate cCRE as measured by linear distance to the

nearest transcription start site.

● 3D chromatin interactions: We intersected cCREs with the anchors of 3D chromatin

loops—RNAPII ChIA-PET, CTCF ChIA-PET and Hi-C—from K562 cells. To link a

candidate cCRE to a gene, we required one end of the loop to overlap the cCRE and

the other end of the loop to fall within 2kb of an annotated transcription start site.

● CRISPRi-FlowFISH: We intersected the GRCh38 mapped coordinates with candidate

cCREs and selected all cCRE-gene pairs with an FDR < 0.05.

For the cross-biosample, cross-gene expression analysis (Figure 4c) gene quantification files

were downloaded directly from the ENCODE portal (experiment and file IDs in Supplementary

Table 12b). For KLF1 gene expression data was downloaded directly from SCREEN (Extended

Data Figure 7c, Supplementary Table 12c).

Data Availability

All cCRE annotations (cell type-agnostic and cell type-specific) are available on SCREEN

(screen.wenglab.org). All other ENCODE data are available on the ENCODE portal

(encodeproject.org) and are referenced by experiment and file accession. Supplementary Data

are also available at https://users.moore-lab.org/ENCODE-cCREs/Supplementary-Data/.

All data used and generated in this study adhere to ENCODE guidelines and comply with

institutional standards, including approval by the appropriate Institutional Review Board (IRB)
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for human-related data and Institutional Animal Care and Use Committee (IACUC) for animal

research.

Code Availability

All code is available on the following repositories:

● https://github.com/weng-lab/ENCODE-cCREs/tree/master/Version-4

● https://github.com/Moore-Lab-UMass/CAPRA

● https://github.com/Moore-Lab-UMass/VESPA

● https://github.com/weng-lab/SCREEN2.0

Specific scripts are also referenced in the corresponding Methods sections.

Acknowledgements

This study was funded by National Institutes of Health grants U24HG009446 and

U24HG012343 (Z.W.), UM1HG009390 (B.E.B.), UM1HG009382 (M.L) , UM1HG009442 (M.S.),

UM1HG009443 (A.M.), UM1HG009421 (L.A.P), UM1HG009428 (T. R.), and U01HG009380

(M.B.) The research of D.E.D, A.V, and L.A.P. was conducted at the E.O. Lawrence Berkeley

National Laboratory and performed under U.S. Department of Energy Contract

DE-AC02-05CH11231, University of California.

We are grateful to the ENCODE Consortium for its collective efforts in enabling large-scale data

production, advancing methods development, and facilitating data analysis, which provided the

foundation for this work. We thank the ENCODE Registry of cCRE Working Group

(Supplementary Note 8.1) for providing valuable feedback on this work and also acknowledge

the ENCODE TSS Annotation Working Group (Supplementary Note 8.2) for their contributions

to improving transcription start site annotations. We also extend our thanks to the ENCODE

Biosamples Working Group (Supplementary Note 8.3) for their critical role in coordinating

sample generation, which provided essential resources for this study. Finally, we would like to

thank Mansi Khandpekar and Andres Colubri for their help in redesigning the SCREEN logo.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://github.com/weng-lab/ENCODE-cCREs/tree/master/Version-4
https://github.com/Moore-Lab-UMass/CAPRA
https://github.com/Moore-Lab-UMass/VESPA
https://github.com/weng-lab/SCREEN2.0
https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ethics declarations (competing interests)

J.M.E. is an inventor on patents and patent applications related to CRISPR screening

technologies, has received materials from 10× Genomics unrelated to this study, and has

received speaking honoraria from GSK plc. B.E.B. discloses financial interests in HiFiBio,

Arsenal Biosciences, Chroma Medicine, Cell Signaling Technologies and Design

Pharmaceuticals. M.P.S. is a co-founder and on the advisory boards of Personalis, Qbio,

January AI, SensOmics, Filtricine, Protos, Mirvie, Onza, Marble Therapeutics, Iollo, and

NextThought AI. He is also on the advisory boards of Jupiter, Applied Cognition, Neuvivo,

Mitrix, and Enovone. A.K. is a consulting fellow with Illumina; a member of the SABs of

OpenTargets (GSK), PatchBio, and SerImmune; and a co-founder of RavelBio. Z. W. is a

cofounder of Rgenta Therapeutics and serves on its scientific advisory board. The other

authors declare no competing interests.

Author contributions

J.E.M. and Z.W. conceived and designed the study. A.K., A.M., M.S, T.R., and M.L. provided

regular feedback on computational methodology, biological interpretation, and manuscript

preparation. J.E.M. H.E.P., and K.F., performed the data analysis with contributions from S.I.E,

G.A., M.G., N.S., and Y.F. Additional supporting analysis was performed by A.P., V.R., F.R.,

B.B., M.Y., E.W., M.R-R., M.R-M., J.X., T.G. under the supervision of J.E.M., Z.W., M.A.B., R.G.,

M.B.G., A.M., and A.K., H.E.P., N.P., and J.F, developed the SCREEN web portal with

contributions from M.C.L., J.M., M.G., E.C., and R.S. N.F, C.B.E, E.G. and B.B. led the

generation of histone modification data and coordinated cross-consortium data generation

efforts. D.E.D, A.V, and L.A.P. carried out transgenic mouse enhancer assays and contributed

related biological insights. T.R. and J.E. provided functional characterization data and

contributed related biological insights. J.E.M. and Z.W. wrote the manuscript with input from all

authors. All authors reviewed and approved the final version of the manuscript.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


5HIHUHQFHV

1. ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the

human and mouse genomes. Nature 583, 699–710 (2020).

2. Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code.

Mol. Cell 83, 373–392 (2023).

3. Fan, K., Pfister, E. & Weng, Z. Toward a comprehensive catalog of regulatory elements.

Hum. Genet. 142, 1091–1111 (2023).

4. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell

152, 1237–1251 (2013).

5. Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a

new era. Cell 157, 13–25 (2014).

6. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional

Enhancers in Development and Evolution. Cell 167, 1170–1187 (2016).

7. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function.

Nat. Rev. Genet. 22, 154–168 (2021).

8. The ENCODE Project Consortium. Identification and analysis of functional elements in

1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

9. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the

human genome. Nature 489, 57–74 (2012).

10. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome.

Nature 515, 355–364 (2014).

11. ENCODE Project Consortium et al. Perspectives on ENCODE. Nature 583, 693–698

(2020).

12. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature

489, 75–82 (2012).

13. John, S. et al. Genome-Scale Mapping of DNase I Hypersensitivity. Curr. Protoc. Mol.

Biol. Chapter 27, Unit21.27 (2013).

14. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.

Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,

DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


15. Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L. & Wold, B. Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

16. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics.

Nat. Rev. Genet. 10, 57–63 (2009).

17. Barski, A. et al. High-resolution profiling of histone methylations in the human genome.

Cell 129, 823–837 (2007).

18. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo

protein-DNA interactions. Science 316, 1497–1502 (2007).

19. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin

immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

20. The ENCODE Project Consortium. The ENCODE4 Flagship Paper. >(1&�3��@

21. The ENCODE Functional Characterization Working Group. Functional characterization of

regulatory elements in the human genome. >(1&�3��@

22. Shi, M., Gaynor, S., Moran, J. & White, K. Generating an Enhancer Catalogue Using

STARR-seq in Pancreatic Organoids. >(1&�3��@

23. Johnson, G. D. & Reddy, T. Genome-wide measurement of genomic regulatory activity

elicited by diverse glucocorticoid receptor ligands. >(1&�3��@

24. Klein, J. C. et al. A systematic evaluation of the design and context dependencies of

massively parallel reporter assays. Nat. Methods 17, 1083–1091 (2020).

25. Gordon, M. G. et al. lentiMPRA and MPRAflow for high-throughput functional

characterization of gene regulatory elements. Nat. Protoc. 15, 2387–2412 (2020).

26. Agarwal, V. et al. Massively parallel characterization of transcriptional regulatory

elements in three diverse human cell types. bioRxivorg (2023) doi:10.1101/2023.03.05.531189.

27. Reilly, S. K. et al. Direct characterization of cis-regulatory elements and functional

dissection of complex genetic associations using HCR-FlowFISH. Nat. Genet. 53, 1166–1176

(2021).

28. Yao, D. et al. Multicenter integrated analysis of noncoding CRISPRi screens. Nat.

Methods 21, 723–734 (2024).

29. Vierstra, J., Meuleman, W. & Stamatoyannopoulos, J. A comprehensive catalogue of

accessible DNA elements encoded by the human genome. >(1&�3��@

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. Vierstra, J. & Stamatoyannopoulos, J. The accessible DNA landscape of the mouse

genome. >(1&�3��@

31. White, S. M. et al. Dynamics of transcription factor organisation across cell types.

>(1&�3��@

32. Li, Y. E. et al. A comparative atlas of single-cell chromatin accessibility in the human

brain. Science 382, eadf7044 (2023).

33. Loupe, J. M. et al. Multiomic profiling of transcription factor binding and function in

human brain. Nat. Neurosci. 27, 1387–1399 (2024).

34. Love, M., Anders, S. & Huber, W. Differential analysis of count data – the DESeq2

package. Genome Biol. (2013).

35. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell

type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

36. Maurer, B., Kollmann, S., Pickem, J., Hoelbl-Kovacic, A. & Sexl, V. STAT5A and

STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers 11, (2019).

37. Porcher, C., Chagraoui, H. & Kristiansen, M. S. SCL/TAL1: a multifaceted regulator from

blood development to disease. Blood 129, 2051–2060 (2017).

38. Katsumura, K. R., Bresnick, E. H. & GATA Factor Mechanisms Group. The GATA factor

revolution in hematology. Blood 129, 2092–2102 (2017).

39. Frietze, S. et al. Cell type-specific binding patterns reveal that TCF7L2 can be tethered

to the genome by association with GATA3. Genome Biol. 13, R52 (2012).

40. Law, J. C., Ritke, M. K., Yalowich, J. C., Leder, G. H. & Ferrell, R. E. Mutational

inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk. Res. 17,

1045–1050 (1993).

41. Bressac, B. et al. Abnormal structure and expression of p53 gene in human

hepatocellular carcinoma. Proc. Natl. Acad. Sci. U. S. A. 87, 1973–1977 (1990).

42. Liu, Y. & Bodmer, W. F. Analysis of P53 mutations and their expression in 56 colorectal

cancer cell lines. Proc. Natl. Acad. Sci. U. S. A. 103, 976–981 (2006).

43. Lim, L. Y., Vidnovic, N., Ellisen, L. W. & Leong, C.-O. Mutant p53 mediates survival of

breast cancer cells. Br. J. Cancer 101, 1606–1612 (2009).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. Yusein-Myashkova, S., Stoykov, I., Gospodinov, A., Ugrinova, I. & Pasheva, E. The

repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level

and the p53 status. J. Biochem. 160, 37–47 (2016).

45. Beauchemin, H. & Möröy, T. Multifaceted Actions of GFI1 and GFI1B in Hematopoietic

Stem Cell Self-Renewal and Lineage Commitment. Front. Genet. 11, 591099 (2020).

46. Segert, J. A., Gisselbrecht, S. S. & Bulyk, M. L. Transcriptional Silencers: Driving Gene

Expression with the Brakes On. Trends Genet. 37, 514–527 (2021).

47. Pang, B., van Weerd, J. H., Hamoen, F. L. & Snyder, M. P. Identification of non-coding

silencer elements and their regulation of gene expression. Nat. Rev. Mol. Cell Biol. 24, 383–395

(2023).

48. Huang, D., Petrykowska, H. M., Miller, B. F., Elnitski, L. & Ovcharenko, I. Identification of

human silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome

Res. 29, 657–667 (2019).

49. Doni Jayavelu, N., Jajodia, A., Mishra, A. & Hawkins, R. D. Candidate silencer elements

for the human and mouse genomes. Nat. Commun. 11, 1061 (2020).

50. Pang, B. & Snyder, M. P. Systematic identification of silencers in human cells. Nat.

Genet. (2020) doi:10.1038/s41588-020-0578-5.

51. Ngan, C. Y. et al. Chromatin interaction analyses elucidate the roles of PRC2-bound

silencers in mouse development. Nat. Genet. (2020) doi:10.1038/s41588-020-0581-x.

52. Cai, Y. et al. H3K27me3-rich genomic regions can function as silencers to repress gene

expression via chromatin interactions. Nat. Commun. 12, 719 (2021).

53. Hansen, T. J. & Hodges, E. ATAC-STARR-seq reveals transcription factor-bound

activators and silencers across the chromatin accessible human genome. Genome Res. 32,

1529–1541 (2022).

54. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a

coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

55. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel

gene expression to neurons. Cell 80, 949–957 (1995).

56. Coulson, J. M. Transcriptional regulation: cancer, neurons and the REST. Curr. Biol. 15,

R665–8 (2005).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


57. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from

thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

58. Sayers, E. W. et al. Database resources of the national center for biotechnology

information. Nucleic Acids Res. 50, D20–D26 (2022).

59. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide

association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47,

D1005–D1012 (2019).

60. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate

causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

61. Maurano, M. T. et al. Systematic localization of common disease-associated variation in

regulatory DNA. Science 337, 1190–1195 (2012).

62. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease

associations with regulatory information in the human genome. Genome Res. 22, 1748–1759

(2012).

63. Karczewski, K. J. et al. Systematic functional regulatory assessment of

disease-associated variants. Proc. Natl. Acad. Sci. U. S. A. 110, 9607–9612 (2013).

64. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease

variants. Nature 518, 337–343 (2015).

65. Finucane, H. K. et al. Partitioning heritability by functional annotation using

genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

66. Ward, L. D. & Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell

types, regulators and target genes for human complex traits and disease. Nucleic Acids Res.

44, D877–81 (2016).

67. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic

circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

68. Dong, S. et al. Annotating and prioritizing human non-coding variants with RegulomeDB

v.2. Nat. Genet. 55, 724–726 (2023).

69. Andersson, L. C., Nilsson, K. & Gahmberg, C. G. K562--a human erythroleukemic cell

line. Int. J. Cancer 23, 143–147 (1979).

70. Lozzio, B. B., Lozzio, C. B., Bamberger, E. G. & Feliu, A. S. A multipotential leukemia cell

line (K-562) of human origin. Proc. Soc. Exp. Biol. Med. 166, 546–550 (1981).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


71. Tallack, M. R. & Perkins, A. C. KLF1 directly coordinates almost all aspects of terminal

erythroid differentiation. IUBMB Life 62, 886–890 (2010).

72. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription

factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids

Res. 46, D252–D259 (2018).

73. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given

motif. Bioinformatics 27, 1017–1018 (2011).

74. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic

features. Bioinformatics 26, 841–842 (2010).

75. Hinrichs, A. S. The UCSC Genome Browser Database: update 2006. Nucleic Acids

Research 34, D590–D598 (2006).

76. Pratt, H. E. et al. Factorbook: an updated catalog of transcription factor motifs and

candidate regulatory motif sites. Nucleic Acids Res. 50, D141–D149 (2022).

77. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding

sequences. Nature 444, 499–502 (2006).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.26.629296doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.26.629296
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends

Figure 1 | The updated Registry of candidate cis-Regulatory elements.

a, Schematic of the pipeline used to make Version 4 of the Registry of cCREs. We define

element anchors by generating representative DHSs (rDHSs) and transcription factor clusters.

Element anchors are scored with H3K4me3, H3K27ac, and CTCF ChIP-seq and ATAC-seq

signals (yellow box) and classified according to the scheme in b. This results in 2.3 million

cCREs in the human genome and 927 thousand in the mouse genome. We supplement the

Registry with additional ENCODE Encyclopedia annotations including transcription

quantifications, 3D chromatin contacts, functional characterization measurements, sequence

features, and genetic variation (blue box). The Registry of cCREs and all layered annotations

are housed in our web portal SCREEN. New components of the pipeline are denoted by stars.

b, Overview of our cCRE classification scheme. cCREs are classified based on their patterns of

biochemical signals (chromatin accessibility in green, H3K4me3 in red, H3K27ac in yellow,

CTCF in blue, transcription factor in purple) and distance from annotated TSSs. High signals

are denoted by peaks. A +/- symbol indicates that the corresponding signal may or may not be

present and its presence does not impact classification. New categories of elements are

denoted by stars. c, Bar graphs depicting the number of cCREs annotated in each class for

human (left) and mouse (right). The gray hatched bar indicates an upper bound for the number

of CA cCREs in mouse that would be classified as enhancers if H3K27ac data were available.

Figure 2 | Functional characterization of the Registry of cCREs.

a, Summary of cCREs tested by ENCODE4 functional characterization assays. b, Schematic of

the CAPRA quantification method which utilizes solo fragments (overlapping single cCREs in

their entirety, blue) and double fragments (overlapping two cCREs in their entirety, purple). c,

Density plot showing the distributions of CAPRA quantifications in K562 cells for K562

promoter (red), distal enhancer (yellow) or low chromatin accessibility (gray) cCREs. d,

Scatterplot of CAPRA quantifications for distal enhancer cCREs in K562 (x-axis) and HepG2

(y-axis). Color of points indicates cCREs with enriched activity (STARR+) in K562 (pink) or

HepG2 (green). e, Barplots of motif enrichment for HepG2 (green) or K562 (pink) STARR+ distal

enhancers (as defined in d). Top five motifs are shown for each group of cCREs along with their
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corresponding logo. f, Genome browser view of three distal enhancer cCREs (denoted by 1-3)

in the MTNR1A intron with DNase (green) and H3K27ac (yellow) signals in K562. A STARR-seq

peak call is shown in black. g, CAPRA quantifications for the three enhancers shown in f:

EH38E3620077 (1), EH38E3620078 (2) and EH38E3620079 (3) using solo fragments (top) and

double fragments (bottom). High quantifications are denoted in purple (p = 0.03). h, Overlap of

common K562 transcription factor motifs at the three enhancers in f and g. Representative

motif logos for EH38E3620078 and EH38E3620079 are shown.

Figure 3 | Identification of distinct functional categories of REST-bound cCREs.

a, Computational pipeline for identifying REST-bound cCREs (REST+ cCREs). We overlapped

cCREs with REST ChIP-seq peaks and selected all cCREs that overlap at least five peak

summits and an annotated REST motif instance, resulting in 5,850 REST+ cCREs. b, Barplots

depicting the number of REST+ cCREs stratified by cCRE class. c, Barplots depicting the

enrichment for cCRE classes of REST+ cCREs compared to the entire Registry. d,Workflow for

functionally characterizing REST+ cCREs. e, Representative result from the mouse transgenic

enhancer assay showing activity of REST+ enhancer cCRE EH38E1910506 in mouse brain

regions. f, Bar graphs denoting the percentage of regions tested in transgenic mouse enhancer

assays with positive activity. Regions are stratified into four groups based on cCRE

classification (distal enhancer in yellow, CA-TF in purple) and REST binding (+ and dark bars

indicate REST+, Ư and light bars indicate RESTƯ). ** denotes a Fisher Exact Test p-value less

than 0.01. g, Bar graphs showing the percentage of distal enhancer cCREs with transgenic

mouse enhancer assay activity in specific tissues stratified by REST binding (as defined in f). *

denotes a Fisher Exact Test p-value less than 0.05. h, Density plot of the distributions of

STARR scores calculated by CAPRA for all cCREs (black), REST+ distal enhancer cCREs

(yellow), and REST+ CA-TF cCREs (purple). Both groups of REST+ cCREs have median STARR

scores less than zero, suggesting silencer activity for both groups. P-value is calculated using a

Wilcoxon test.
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Figure 4 | Using the Registry of cCREs to study transcriptional regulation.

a, Genome browser view of three SNPs associated with red blood cell traits, rs7255045,

rs11672387 and rs7255045, and nearby genes. Biochemical signals from K562 cells are

shown: DNase in light green, H3K4me3 in red, H3K27ac in yellow, CTCF in blue, and RNA-seq

in dark green, along with cCRE classifications in K562. b, Circle-barplots denoting the

enrichment of variants associated with red blood cell traits in cCREs with high H3K27ac signals

in specific cell and tissue types. Length of line denotes the log2 fold enrichment over control

variants and size of the terminal circle indicates statistical significance of enrichment. Color of

line denotes tissue/organ of origin of biosample. A representative set of biosamples is shown

with one cell line and one tissue sample for each non-blood tissue/organ. c, Heatmap

depicting the expression level of genes linked and/or proximal to variants associated with red

blood cell traits across the same biosamples as b.
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