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SUMMARY

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse 

behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan 

receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector 

of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes 

and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-
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associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks 

reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize 

the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional 

networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The 

network controlled by NR4A2 is characterized using a transcription factor regulatory network 

inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior 

and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of 

relapse.

Graphical abstract

In brief

Childs et al. show that expressing the Nr4a2/Nurr1 dominant negative (Nurr2c) in the medial 

habenula reduces reinstatement of operant cocaine seeking. Single-nucleus RNA sequencing is 

used to characterize NR4A2 transcription factor regulatory networks and to identify gene networks 

related to substance use disorders that are affected by Nr4a2 manipulations.

INTRODUCTION

Substance use disorder pathology includes an enduring risk of relapse, encoded partly during 

drug taking when the activity of drugs of abuse facilitates abnormally strong context/reward 

memories. These memories underlie the triggering properties of drug-associated cues and 

environments, and vulnerability to these triggers can last decades. This persistence is partly 

Childs et al. Page 2

Cell Rep. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attributed to the effects of drug-associated behaviors on epigenetically driven mechanisms 

which can cause long-lasting changes in cell function and subsequent behavior. In the 

context of neuronal function, epigenetics is defined as changes in gene expression that are 

not attributable to alterations in the sequence of DNA.

Histone deacetylase 3 (HDAC3; a powerful epigenetic regulator) manipulations can both 

transform subthreshold learning into long-term memory and generate abnormally persistent 

forms of long-term memory,1 including cocaine-context-associated long-term memory.2 

HDAC3 regulation of memory formation depends largely on nuclear orphan receptor 

subfamily4 groupA member2 (NR4A2), classifying Nr4a2 as a major epigenetic effector 

gene.1,3 Nr4a2 is an immediate-early gene and transcription factor (TF),4 important 

for developing5 and maintaining6 dopaminergic neurons, expressing genes involved in 

dopamine signaling,6–9 and medial habenula (MHb) development.10 Normally, HDAC3 

binds to Nr4a2 promoters and suppresses expression, and in the nucleus accumbens 

Nr4a2 expression is increased in cocaine-exposed HDAC3flox/flox mice.2 In wild-type 

mice, acquisition of cocaine-conditioned place preference reduces HDAC3 occupancy at 

Nr4a2 promoters, enabling a more permissive state for Nr4a2 expression and linking 

Nr4a2 to cocaine-associated behaviors.2 Both Hdac3 and Nr4a2 are highly expressed in 

a region important for nicotine seeking and withdrawal, the MHb.11–13 Previous work 

in our lab found that expressing the endogenously occurring dominant negative form of 

Nr4a2, Nurr2c,14 in the cholinergic neurons of the MHb reduced reinstatement of cocaine-

conditioned place preference, identifying a role for MHb NR4A2 in cocaine-induced 

associative memory processes. Here, we used the same approach to reduce NR4A2 function 

in MHb cholinergic neurons (and other secondary cell types) and studied volitional cocaine 

seeking and relapse using cocaine self-administration followed by a 30-day withdrawal. 

Animals were then extinguished and reinstated. This approach allowed us to assess the 

motivational aspect of drug seeking, which we could not ascertain in our previous studies 

using conditioned place preference.15,16 Using this gold-standard model for addiction, we 

observed a near complete block of cued reinstatement of cocaine seeking (but no differences 

in acquisition or extinction) after functionally suppressing MHb NR4A2, demonstrating that 

MHb Nr4a2 regulates operant cocaine seeking in addition to cocaine-associative memory.

To study the molecular changes associated with this prominent behavioral shift and better 

understand the downstream effects of manipulating the TF NR4A2, we used single-nucleus 

RNA sequencing (snRNA-seq) to perform an unbiased analysis of the transcriptome, which 

revealed transcriptomic networks regulated by NR4A2 that were related to addiction and 

neuroplasticity and were altered in specific subsets of MHb neurons. Broadly, we identify 

MHb NR4A2 as a cocaine-sensitive relapse regulator. Further, because nuclear orphan 

receptors such as NR4A2 have druggable ligand-binding sites, NR4A2 is currently a 

therapeutic target for multiple disorders including cancer, Alzheimer’s disease, Parkinson’s 

disease, and substance use disorders.17,18 Here we provide the first sequencing dataset 

showing how changes in NR4A2 function affect the expression of its downstream targets, 

with important implications in addiction, memory, and pharmacology research.
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RESULTS

Expression of Nr4a2 dominant negative Nurr2c in medial habenula cholinergic neurons 
reduces reinstatement of cocaine self-administration

To examine the MHb contribution to volitional cocaine seeking, we used an intravenous 

cocaine self-administration model of relapse to drug seeking19 (Figure 1A and STAR 

Methods) to obtain the most translationally relevant measure of MHb NR4A2 function in 

relapse. Considering that NR4A2 is druggable,17,18 responsive to cocaine,20,21 and densely 

expressed in the MHb, we chose to study the role of MHb NR4A2 in reinstatement of 

cocaine seeking by using the Nr4a2 dominant negative Nurr2c22 to reduce MHb NR4A2 

function. The MHb is anatomically small, and the ventral portion is densely cholinergic. We 

used a transgenic mouse expressing Cre in cells with choline acetyltransferase (ChAT) to 

constrain expression of a Cre-dependent adeno-associated virus containing Nurr2c (or GFP 

control) to the MHb (Figures 1B and 1C; STAR Methods). These mice were then trained to 

self-administer cocaine, which was followed by a 30-day withdrawal used to drive craving 

and reinstatement of cocaine seeking. During cocaine self-administration, presses on the 

active lever exceeded presses on the inactive lever in both groups (behaviorally experienced 

GFP: F(1,20) = 76.11, p < 0.0001; behaviorally experienced NURR2C: F(1,26) = 40.08, p < 

0.0001; Figure 1D). During self-administration there were no differences between groups 

in responses to the active lever (F(1,22) = 0.093, p = 0.763, Figure 1D) or in the amount 

of cocaine consumed (behaviorally experienced GFP average = 23.46 rewards per session, 

behaviorally experienced NURR2C average = 25.30 rewards per session, F(1,22) = 0.555, p = 

0.464). After 30 days of homecage withdrawal there were no differences between groups in 

extinction (F(1,18) = 0.161, p = 0.693, Figure 1E). At the end of extinction (E5), all animals 

received 10 min of cue priming to induce reinstatement, which was followed by a 1-h 

cued reinstatement session. Behaviorally experienced GFP mice showed high reinstatement 

compared to behaviorally experienced NURR2C mice (t(22) = 3.814, p = 0.0009, Figure 1F), 

demonstrating that NR4A2 in MHb ChAT neurons contributes to relapse-like behavior and 

suggesting a role for the MHb in drug-associated behaviors.

Single-nucleus RNA-seq of the mouse habenula to study the role of Nr4a2 in reinstatement 
of cocaine seeking

As NR4A2 has easily druggable ligand-binding sites, delineating the downstream 

transcriptomic changes that occur after manipulations of Nr4a2 has high value to a broad 

range of scientific and medical fields of study. To examine NR4A2-dependent changes in the 

transcriptome of the MHb after reinstatement, we performed snRNA-seq (10× Genomics v3, 

STAR Methods) on habenula tissue samples from mice that experienced cued reinstatement 

of cocaine seeking. Tissue for snRNA-seq was taken from mice that overexpressed Nurr2c 

(n = 6 behaviorally experienced NURR2C) in the MHb and from control mice (n = 5 

behaviorally experienced GFP). We also included two additional groups to control for the 

cocaine self-administration and reinstatement experience, behaviorally naive NURR2C mice 

(n = 4) and behaviorally naive GFP mice (n = 4). Following stringent quality control 

filtering based on sequencing metrics (STAR Methods), we retained 109,881 nuclei for 

downstream analysis, making this the largest snRNA-seq dataset of the mouse habenula 

to date23,24 (median unique molecular identifiers/cell: 3,110; median genes/cell: 2,032; 
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Figure S1). Using unsupervised dimensionality reduction and Leiden clustering25 on a 

transcriptomic cell neighborhood graph, we identified 26 cell clusters belonging to 11 major 

cell classes (STAR Methods), and we visualized these clustering results using uniform 

manifold approximation and projection26 (UMAP, Figure 2A). We annotated Leiden clusters 

based on the results of an unbiased cluster marker gene analysis (Figure 2B, STAR Methods, 

and Table S1) and by inspecting the expression of canonical habenula cell-type markers 

(a list of several genes defined each cluster, see STAR Methods and Figure S2). In sum, 

our clustering analysis revealed five MHb neuron populations (19,310 nuclei; MHb1-5), six 

lateral habenula (LHb) neuron populations (19,882 nuclei; LHb1-6), and four perihabenular 

(PHb) neuron populations (18,082 nuclei; PHb1-4), as well as glial and neurovascular cell 

populations including astrocytes (15,986 nuclei; ASC1-2), microglia (3,672 nuclei; MG), 

oligodendrocytes (21,624 nuclei, ODC1-3), oligodendrocyte progenitors (3,882 nuclei; 

OPC), pericytes (1,748 nuclei; PER), endothelial cells (2,237 nuclei; END), fibroblasts 

(403 nuclei; FBR), and ependymal cells (3,055 nuclei, EPD). Integration and comparison of 

our dataset with a published habenula snRNA-seq dataset supports our cell clustering and 

annotation being consistent with the previous literature23 (Figure S3).

Targeting medial habenula Nr4a2

We next validated the general approach of restricting Nurr2c expression to MHb ChAT 

neurons. First, we wanted to verify expression levels of MHb Chat. Using our snRNA-seq 

dataset we found that Nr4a2 expression was highest in habenula neuron clusters (Figures 

2C and 2D), and found higher expression of Chat in MHb neurons relative to other cell 

types in both groups of GFP mice and both groups of NURR2C mice (Figure 2D and Table 

S1), indicating that the use of ChAT-Cre mice likely restricted Nurr2c expression to MHb 

neurons. To verify endogenous Nr4a2, validating Nr4a2 as a viable MHb target, we next 

examined expression levels of MHb Nr4a2 and family members Nr4a1 and Nr4a3. In both 

groups of GFP mice (with no Nr4a2 manipulations), Nr4a2 was higher in MHb neurons and 

LHb neurons compared to other cell types, indicating an innate role for Nr4a2 in habenula 

neurons (Figure 2D and Table S1). In all groups, expression of family members Nr4a1 
and Nr4a3 was low across all cell types (Figure 2D), indicating that targeting MHb Nr4a2 
is viable and that the Nurr2c manipulation does not lead to compensatory expression of 

Nr4a1/3. We did find increases in Nr4a2 + Nurr2c (labeled collectively as Nr4a2 in Figure 

2) expression in both groups of NURR2C mice in MHb neurons, relative to GFP controls, 

with minimal changes in non-neuronal cell types (Figure 2D and Table S1). Clusters MHb 

1, 2, 3, and 5 have Chat expression, which correlates with increased Nr4a2 + Nurr2c 
expression after Nurr2c infusions. In contrast, MHb-4 cluster has very little Chat, and 

correspondingly there is no change in Nr4a2 + Nurr2c expression in Mhb-4 after the Nurr2c 

infusion compared to GFP-infused mice. Because our short-read sequencing approach that 

does not differentiate Nurr2c and Nr4a2 transcripts, we conducted a BaseScope study in 

tissue from Nurr2c-infused mice using probes for Nurr2c and Nr4a2 that can distinguish 

between the two. We observed dense expression of Nr4a2 in the MHb, with some sparse 

expression in the LHb (Figure 1C, red); however, despite restriction to the MHb by use of 

ChAT-Cre mice, Nurr2c transcripts were also found across the greater anatomical region 

(Figure 1C [right], green). We attributed this to high levels of Nurr2c transcription after viral 

delivery or perhaps trafficking of transcripts within the habenula complex. Most importantly, 
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NURR2C protein is restricted to the ventral MHb cells as expected. We validated NURR2C 

protein expression using immunohistochemistry against the V5 tag and found that protein 

expression was restricted to the ventral MHb (inset in Figure 1B, which replicates what we 

observed in a previous study using this approach14), despite broad expression of the mRNA 

transcript. snRNA-seq read coverage at the Nr4a2 locus on the UCSC Genome Browser 

shows that the snRNA-seq reads are unable to distinguish between Nr4a2 and Nurr2c at 

the three possible regions in which these transcripts differ (highlighted in gray columns) 

but that there are more reads in the NURR2C groups (which express Nurr2c, behaviorally 

experienced = MHb NURR2C, behaviorally naive = MHb NN) for Nr4a2 + Nurr2c than 

observed in GFP controls (Figures 2E and S4). In summary, we found that both Chat and 

Nr4a2 are highly expressed in the MHb (as expected) and that NURR2C in the MHb does 

not lead to a compensatory effect in the expression of Nr4a1 or Nr4a3.

Transcription factor regulatory network analysis reveals NR4A2 as a key regulator of 
medial habenula neurons

NR4A2 is a TF and is thus able to modulate the expression of many genes both directly 

via interactions with promoters or enhancers and indirectly by regulating other TFs that 

modulate additional genes. Since our experiment included mice expressing a dominant 

negative isoform of NR4A2 and GFP controls, we had a unique opportunity to probe 

our snRNA-seq dataset to characterize the regulatory role of NR4A2 within the MHb. 

We identified putative NR4A2 target genes and mapped NR4A2 regulatory networks by 

employing a data-driven strategy to infer MHb neuron TF regulatory networks for each of 

the four mouse groups (behaviorally experienced NURR2C/GFP that have gone through 

cocaine self-administration and reinstatement, and behaviorally naive NURR2C/GFP; see 

STAR Methods). TFs may have distinct and conserved regulatory signatures across different 

cell types and experimental conditions,27 motivating us to analyze networks separately 

in our four groups, followed by a comparative analysis. Using the set of genes in our 

snRNA-seq dataset, we first scanned gene-promoter regions for the presence of TF-binding 

motifs for 660 TFs from the JASPAR TF motif database to identify a list of potential 

regulatory targets for each TF, including NR4A2 (Figure 3A). We next used an ensemble 

learning algorithm (extreme gradient boosting trees, XGBoost) to model the expression of 

each gene based on the expression of its potential TF regulators. This method allows us to 

compute TF regulatory scores, quantifying how important a particular TF was for modeling 

the expression of a gene, therefore allowing us to identify the most likely regulators of 

each gene. We assign a direction to the TF regulatory scores based on the sign of the gene 

co-expression of the TF and the potential target gene. After repeating this process for all 

potential TF-gene links from the motif scan, the most confident TF-gene regulatory links 

are retained to define ‘‘TF regulons,’’ the set of putative target genes for each TF (STAR 

Methods). Importantly, this approach can distinguish between activating and repressing 

target genes of each TF based on the sign of the TF regulatory score. Finally, these TF-gene 

regulatory links and regulons are assembled into a final TF regulatory network (Figure 

3A and Table S3). Importantly, we can use this TF regulatory network to identify indirect 

targets of NR4A2 that are mediated through other TFs, and in our analyses we distinguish 

these as primary (direct) and secondary (indirect) target genes (STAR Methods). We used 

these MHb neuron TF regulatory networks to specifically probe the downstream regulatory 

Childs et al. Page 6

Cell Rep. Author manuscript; available in PMC 2024 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets of NR4A2 in our four mouse groups. We first computed composite gene expression 

scores (UCell) for NR4A2 target genes in the behaviorally experienced and naive NURR2C 

groups, revealing a broad regulatory impact of NR4A2 in MHb neurons (Figure 3B and 

STAR Methods). We next visualized the network comprising NR4A2 and its primary and 

secondary target genes in the behavior NURR2C and GFP groups (Figures 3C and 3D). In 

the NURR2C network, we found 714 primary target genes and 2,110 secondary target genes, 

and in the GFP network we identified 451 primary and 2,249 secondary target genes (Figure 

3E). Of these genes, 26 primary and 125 secondary targets were TFs in the NURR2C 

network, while 14 primary and 108 secondary targets were TF genes in the GFP network.

One of the primary targets of NR4A2 is Ctcf, which codes for CCCTC-binding factor 

(CTCF), a highly conserved master regulator of 3D chromatin topology and architecture 

that can alter interactions between enhancer and promoter regions.28,29 NR4A2 was only 

predicted as a transcriptional regulator of Ctcf based on our network analysis of the behavior 

NURR2C group (Table S3). This regulatory relationship between NR4A2 and Ctcf in 

MHb neurons could mediate downstream effects on the 3D genome structures of MHb 

neurons, and CTCF-mediated epigenetic regulation remains understudied in the habenula 

in the context of addiction. Two of the other primary TF targets of NR4A2 in NURR2C 

mice, Tcf4 and Ppard (coding for TF 4 and peroxisome proliferator-activated receptor d, 

respectively), target Nr4a2 based on our network analysis, effectively forming a regulatory 

feedback loop. Tcf4 is a known genetic risk factor for neuropsychiatric disorders including 

schizophrenia and autism spectrum disorder,30,31 and neuronal expression of Tcf4 has been 

linked to neuronal differentiation in embryogenesis32 as well as structural and functional 

integrity of adult neurons.33 On the other hand, Ppard is a ligand-activated TF involved 

in lipid metabolism and, while its role is not well understood in habenula neurons, it 

has been implicated in adult neurogenesis and neuronal stem cell fate determination.34 

When we investigated TF regulatory networks in the behaviorally naive NURR2C and 

GFP mice, we observed conserved and distinct TF-gene regulatory patterns compared to 

the behavior groups, including the link between Tcf4 and Nr4a2 (Figures 3F–3H). We 

compared the NR4A2 TF regulatory scores and the sets of NR4A2 target genes between 

the four experimental groups, and while many regulatory targets were conserved across 

groups even more targets were group specific (Figure S5). To further understand which 

biological processes are potentially regulated by NR4A2 in the MHb, we performed 

pathway enrichment analysis in the sets of NR4A2 primary target genes, stratifying by 

activating and repressing target genes (Figures 3I and 3J; Table S4; STAR Methods). In 

both the behavior and naive NURR2C networks, NR4A2 primary target genes were enriched 

for pathways associated with critical neuronal functions such as neurotransmission, synaptic 

assembly, and neuroplasticity. Nr4a2 is a known target of the epigenetic regulator HDAC3, 

and this analysis identified that pathways associated with epigenetic regulation, specifically 

histone modifications and acetylation, were enriched in these NR4A2 primary target genes. 

In sum, this analysis illuminates key genes, TFs, and pathways that are regulated by NR4A2 

in MHb neurons. Critically, we note that these putative TF-gene relationships are based on a 

computational model and therefore require further study and validation to comprehensively 

understand the regulatory landscape of habenula neurons.
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Nr4a2-dependent changes in the habenula transcriptome in behaviorally naive mice

To obtain a baseline response in changes to the transcriptome resulting from NURR2C, 

we first identified differentially expressed genes (DEGs) in our behaviorally naive groups 

(NURR2C and GFP). We performed differential gene expression tests comparing nuclei 

from behaviorally naive NURR2C and behaviorally naive GFP in each major cell type, 

and we highlighted the results for the MHb and LHb neuron populations (Figures 4A, 

4B, and S6; Table S5). We stratified our DEG results within these cell populations by 

putative primary and secondary NR4A2 target genes and other non-target genes, and we 

identified significant DEGs in each of these gene groups (Figures 4A and 4B). Pairwise 

rank-rank hypergeometric overlap (RRHO) analysis comparing genes ranked by log2(fold 

change) showed broad similarities between NURR2C and GFP differential expression effect 

sizes for the MHb and LHb neuron DEG tests (Figure 3C). In a gene set overlap of 

DEGs significantly up- or downregulated (adjusted p < 0.05; log2(fold change) > 0.25 for 

upregulated; log2(fold change) < −0.25 for downregulated), we found that only 38 genes 

were significantly upregulated in both MHb and LHb neurons and just six genes were 

significantly downregulated in both MHb and LHb neurons. Both overlaps were statistically 

significant based on Fisher’s exact test compared to the background set of genes in our 

dataset (Figure 4D, upregulated overlap p = 7.2e-62, downregulated overlap p = 3.2e-13). 

Together, this overlap analysis shows that MHb and LHb neurons share some genes with 

changing expression levels, but also that most of the genes in habenula neurons change 

in ways that are specific to the type of neuron in which they are found. Many of these 

significant DEGs were primary or secondary target genes of NR4A2 based on our TF 

regulatory network analysis (Figure 4E). One of the top genes downregulated in NURR2C 

that was a primary target of NR4A2 in the MHb was Kcnip4, which codes for a potassium 

voltage-gated channel interacting protein involved in neuronal excitation, which has links 

to substance use disorder.35 Furthermore, one of the top genes upregulated NR4A2 targets 

in the MHb was H3f3b, which codes for a member of the histone H3 family. Pathway 

enrichment analysis of these DEGs highlighted biological processes that were altered in 

the NURR2C manipulation (Figures 4F–4H). Terms associated with RNA splicing and 

chromatin remodeling were enriched in genes upregulated in NURR2C mice in both the 

MHb and LHb neurons, and we found terms associated with synaptic functions enriched 

in genes downregulated in NURR2C mice in MHb neurons (Figures 4F–4H). Overall, this 

differential gene expression analysis provides a baseline understanding of transcriptional 

changes in our NURR2C manipulation in behaviorally naive mice and provides a basis of 

comparison for behaviorally experienced mice with the same MHb manipulations that have 

been through cocaine self-administration and reinstatement.

Nr4a2-dependent changes in the habenula transcriptome after reinstatement of cocaine 
seeking

Consideration of the MHb as a regulator of relapse behavior for non-nicotine drugs is 

novel enough that the governing mechanisms within the MHb are nearly completely 

unknown. Based on our previous work,14 we strongly suspected that Nr4a2 levels and 

function were directly linked to reinstatement of cocaine seeking. Because reinstatement 

behavior was reduced in NURR2C mice, we next examined the mechanisms by which 

NR4A2 may be regulating reinstatement. To quantify the effect of the transcriptome-wide 
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perturbation in behaviorally experienced reinstated NURR2C mice, we used a graph 

signal-processing algorithm (MELD)36 to estimate the relative likelihood that a cell was 

observed in NURR2C or GFP in a low-dimensional manifold derived from cells in both 

conditions, thereby yielding a Nurr2c perturbation score for each cell (Figure 5A and STAR 

Methods). While we know the ground-truth origin of each cell (NURR2C or GFP), some 

cells have highly similar transcriptomes across the different conditions while other cells 

undergo vast transcriptional changes, and this approach attempts to bridge this gap in our 

understanding by modeling a continuous measure of perturbation effects in transcriptomic 

space with a relative likelihood estimate. The distribution of these relative likelihood scores 

in each snRNA-seq cluster revealed the clusters with the strongest predicted Nurr2c-induced 

transcriptomic perturbation, highlighting clusters LHb-2, PHb-1, MHb-1, MHb-5, and 

MHb-2. These data show that reducing NR4A2 function in MHb ChAT neurons strongly 

affected gene expression in not only MHb neuron clusters but also LHb neuron clusters, 

suggesting functional interplay between these adjacent and connected regions37 relevant 

to reinstatement of cocaine seeking. Next, we systematically identified DEGs between 

NURR2C and GFP in each cell type (NURR2C DEGs) for mice in the behaviorally 

experienced group, and we highlight the results for the neuronal populations, which we 

stratified by putative primary NR4A2 targets, NR4A2 secondary targets, and probable non-

targets (Figures 5B, 5C, and S6; Table S5).

Group-dependent changes in gene expression were found in MHb and LHb neurons as 

well as non-neuronal cell types (Figures 5B, 5C, and S6), indicating an integrated function 

for Nr4a2 within the MHb. By applying RRHO analysis to the behaviorally experienced 

NURR2C vs. GFP differential expression analysis, we were able to rank genes by log2(fold 

change) and compare genes in MHb neurons to genes in LHb neurons and found little 

concordance of DEG effect sizes between these groups (Figure 5D). In particular, the DEGs 

that were primary or secondary NR4A2 target genes showed worse concordance between 

MHb and LHb neurons than the other genes, and in general the correlations in these effect 

sizes were low, indicating that MHb and LHb neurons broadly had distinct sets of DEGs 

(Figure 5D). We further inspected this trend through gene set overlap analysis of genes 

significantly upregulated (adjusted p < 0.05; log2(fold change) > 0.25) or significantly 

downregulated (adjusted p < 0.05; log2(fold change) < −0.25) in NURR2C in the MHb and 

LHb neurons, finding small yet statistically significant overlaps (Figure 5E). Out of 453 

genes that were downregulated in NURR2C in MHb neurons, only three overlapped with 

genes downregulated in LHb neurons, and only four of the DEGs upregulated in NURR2C 

were shared across MHb and LHb neurons. Together, this overlap analysis comparing 

MHb and LHb neurons shows distinct gene expression changes in response to NURR2C, 

indicating a synergistic interplay of altered genes and pathways across MHb and LHb 

neurons, ultimately leading to an altered behavioral phenotype.

For the MHb neuron population in behaviorally experienced mice, we found that H3f3b, 

a primary NR4A2 target gene, was one of the top downregulated DEGs in NURR2C 

(Figure 5B), while it was one of the top upregulated DEGs in NURR2C in behaviorally 

naive mice (Figure 4A). This demonstrates a specific example of an altered TF regulatory 

regime in behaviorally experienced mice and further implicates the histone H3 as a critical 

structural and regulatory component in the context of addiction in the habenula. Gabbr1 
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(encodes GABAB subunit) was downregulated in MHb and LHb neurons, indicating a 

change in habenular GABAergic transmission in behaviorally experienced NURR2C mice 

compared to behaviorally experienced GFP mice. Within the MHb, GABAB receptor 

activation increases excitatory output from the MHb to its main projection region, the 

interpeduncular nucleus.38 Using pathway enrichment analysis in the genes downregulated 

in NURR2C MHb neurons, we found enrichment for terms associated with neuronal 

function such as synaptic organization, signal transduction, and actin cytoskeleton, as well 

as histone deacetylase binding (Figure 5F). The set of DEGs upregulated in NURR2C in 

the LHb neurons were enriched for terms related to neuronal activity and neurodevelopment 

(Figure 5H). Overall, we found that most DEGs were downregulated in NURR2C in the 

MHb neurons, implying that the dominant negative form of NR4A2 initiates a regulatory 

cascade leading to the downregulation of many genes in MHb neurons (Figure 5G). 

Since many of these DEGs were not primary NR4A2 regulatory targets, this analysis 

highlights the importance of the broader NR4A2 TF regulatory network and other epigenetic 

mechanisms that are contributing to the molecular and behavioral phenotypes observed in 

our experiment.

To determine which of the changes to the transcriptome were caused by the NURR2C 

manipulation and which were a result of the effect of NURR2C on reinstatement of 

cocaine seeking, we compared the DEGs found between behaviorally naive baseline groups 

(NURR2C and GFP, Figure 4) to the DEGs found between behaviorally experienced 

reinstated groups (NURR2C and GFP, Figure 5) and found very little concordance (Figures 

5I and 5J). We directly visualized the NURR2C vs. GFP differential expression effect 

sizes between the behaviorally naive groups and the behaviorally experienced groups 

and highlighted genes that were concordant in the upper right (upregulated in both) 

and lower left (downregulated in both) corners of the plot, and we showed genes that 

were discordant between the analyses in the upper left and lower right corners. This 

analysis was further stratified by NR4A2 target gene status. Out of the primary NR4A2 

target genes, only one gene, Ebf1, was consistently upregulated in NURR2C for both 

our behaviorally experienced and our behaviorally naive comparisons, and nogenes were 

consistently downregulated (Figure5I and Tables S5 and S6). The Ebf1 gene codes for the 

protein early B cell factor 1 (also known as TF COE1), a TF that is typically studied 

in the context of B cell differentiation,39 and has also been implicated in dopaminergic 

neuronal development.40 Furthermore, gene set overlap analysis comparing the upregulated 

and downregulated genes in the MHb and LHb neuron population revealed some small 

yet statistically significant overlaps, with six of the upregulated genes overlapping (p = 

1.1e-11) and four of the downregulated genes overlapping (p = 0.026) in the MHb neurons 

(Figures 5K and 5L). Additionally, Nr4a2 was the only gene that overlapped in the LHb 

neuron comparison (Figure 5L), most likely a reflection of Nurr2c expression. Overall this 

comparative analysis revealed distinctive transcriptional responses in the habenula following 

NR4A2 manipulation between the behaviorally naive and behaviorally experienced groups, 

suggesting it is the combined effect of the NURR2C on NR4A2-dependent transcription and 

animals undergoing reinstatement. This is perhaps not surprising considering reinstatement 

induces a wave of gene expression that may be necessary for reconsolidation or extinction 

mechanisms following reinstatement.
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Co-expression network analysis of MHb neurons reveals addiction-associated gene 
modules

Following our analysis of NR4A2-dependent gene expression, we sought to investigate 

the systems-level transcriptomic changes in MHb neurons induced by expressing Nurr2c. 

Therefore, we performed gene co-expression network analysis in the MHb neuron 

population of behaviorally experienced mice to study the cascade of transcriptional changes 

extending beyond the direct targets of NR4A2 using hdWGCNA (STAR Methods). We 

represented the network structure of genes with similar expression profiles as a signed 

topological overlap matrix (TOM) and hierarchically clustered genes in this network to 

reveal key biological systems and processes involved in MHb neurons. Using this approach, 

we identified nine co-expression modules (M1–M9; Table S9), and we visualized the 

network by projecting the TOM into a non-linear manifold using UMAP (Figure 6A). 

In general, co-expression modules are groups of genes that have similar gene expression 

profiles across different biological samples or cell populations and are typically functionally 

related via shared biological pathways or are co-regulated. Highly connected members of 

co-expression networks, termed ‘‘hub genes,’’ are the core players of critical biological 

processes, and we visualized the top three module hub genes on the TOM UMAP (Figures 

6A and S7). We inspected module eigengenes, a metric summarizing gene expression for an 

entire co-expression module, in single cells to reveal cell-type patterns of network activity, 

allowing us to relate these networks and processes to subpopulations of MHb neurons 

(Figure 6B). Pathway enrichment analysis associated MHb co-expression modules with gene 

ontology (GO) terms related to addiction, neuroplasticity, GABAergic signaling, and other 

cellular processes such as ion transport, cell signaling, and lipid processing (Figure 6C and 

Table S10). Nr4a2 itself is a member of module M1, which contains genes associated with 

RNA splicing, histone modification, neurodevelopment, and neuronal plasticity (Figures 6A 

and 6C). Hdac3, which we have previously described as having an important regulatory role 

with Nr4a2, was identified as a member of module M1, further supporting this relationship. 

We further characterized these modules by performing differential module eigengene 

analysis to compare NURR2C and GFP in behaviorally experienced animals (Figures 6D 

and 6E; STAR Methods). As in our differential expression results of these groups, most of 

the significant results (adjusted p < 0.05) were for modules downregulated in NURR2C, 

while modules M7, M8, and M9 were upregulated in specific MHb neuron subpopulations 

(Figure 6E). Module M6 (nicotine addiction, synaptic function) was the only module that 

was not differentially expressed between NURR2C and GFP in any of the MHb neuron 

subpopulations. On the other hand, module M4 (addiction, neurodevelopment, synaptic 

function and plasticity), which contains hub genes Grin2a and Gabra2, was downregulated 

in NURR2C for three MHb neuron subpopulations. We next inspected the composition 

of each gene module for primary and secondary NR4A2 target genes, and we found a 

significant overlap between primary NR4A2 target genes and all co-expression modules 

except module M5 (Figure 6F). Together, these analyses implicate the addiction-related 

module M4 as a downstream regulatory target of NR4A2 that is significantly downregulated 

in behaviorally experienced NURR2C animals in three MHb neuron populations. Module 

M8 contains hub genes related to synaptic transmission, including Gabra2, Grin3a, and 

Grin2a, as well as neuronal support genes including Cntn5, Amph, and Kcnh5.
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We next investigated NR4A2 regulatory targets from the NURR2C MHb neurons in 

the context of our co-expression modules, paying specific attention to TF-TF regulatory 

links (STAR Methods). We visualized the genes in the co-expression module UMAP and 

highlighted NR4A2 and the set of TFs that are primary NR4A2 targets (Figure 6G). This 

network broadly shows inter- and intramodular regulatory dynamics between TFs, and it 

shows that some modules (M4, M6, and M9) do not contain any primary NR4A2 targets that 

are TFs. We ranked each of the TF target genes of NR4A2 by their regulatory importance 

score and highlighted the top ten TFs whose expression was positively correlated with 

Nr4a2 and all seven of the TFs whose expression was negatively correlated with Nr4a2 
(Figure 6H). We next looked beyond the NR4A2 regulatory network toward all 143 TFs 

in our co-expression network to study the TF-TF regulatory relationships between different 

co-expression modules. We counted the number of TF-TF links where the source TF and 

target TF were assigned to different modules, and we stratified these links by ‘‘activating’’ 

and ‘‘repressing’’ based on the sign of the TF-TF co-expression. We also normalized 

these counts to the total number of TFs present in the source module, thereby obtaining 

activating and repressing link scores that quantify TF-mediated regulatory relationships 

between co-expression modules (Figure 6I and STAR Methods). Furthermore, we subtracted 

the activating and repressing regulatory scores to highlight instances where there were 

greater numbers of activating or repressing TF-TF interactions across modules. This analysis 

revealed important regulatory signatures, such as a negative feedback loop between modules 

M1 and M3. In general, this analysis showed that module M1 (containing Nr4a2) had 

an overall repressing regulatory relationship with six of the other modules (M3, M4, M5, 

M6, M7, and M9). Furthermore, investigating the gene expression patterns of the primary 

NR4A2 target TFs revealed signatures specific to MHb neuron subpopulations (Figure 6J).

We next assessed the reproducibility of these co-expression modules by projecting these 

modules into the Hashikawa et al. habenula snRNA-seq dataset23 and performing module 

preservation analysis (Figure S7), and these results generally supported the robustness and 

reproducibility of our analysis in an independent dataset. We also performed a similar 

module preservation test in MHb neurons from our behaviorally naive mice, and we found 

that all modules were either moderately or highly preserved (Z-summary preservation 

>2 and >10, respectively) except module M2. Considering that our other modules were 

preserved in the Hashikawa dataset and in the behaviorally naive mice, this comparative 

analysis implicates module M2 as specific to our behaviorally experienced mice. Module 

M2 was enriched for genes involved in RNA splicing and RNA processing (Figure 6C) 

and was significantly downregulated in NURR2C in clusters MHb-1, MHb-2, and MHb-4 

(Figures 6D and 6E). A previous study of mouse cocaine self-administration identified 

transcriptome-wide changes in alternative splicing and found a link to enrichment of 

H3K36Me3 marks at differentially spliced junctions.41 This study established a causal 

relationship between H3K36Me3 and Srsf11, a gene coding for serine- and arginine-rich 

splicing factor 11 and a member gene of module M2 in our analysis, to reward behavior 

by demonstrating increased self-administration after Srsf11 manipulation. In our study 

here, Srsf11 was significantly upregulated in behaviorally experienced NURR2C animals 

in MHb neurons with a small effect size (adjusted p = 2.268e-02, log2(fold change) = 

0.1326). We also found that nine TFs that were targets of NR4A2 were also members of 
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module M2, including Ctcf. Our TF-TF regulation analysis showed that module M2 had 

numerous activating TF interactions with addiction-associated modules M3 and M4 as well 

as the other splicing-associated module M1 (Figures 6G–6I). It is known that alternative 

splicing in of itself is a regulatory mechanism for mRNA levels with particularly important 

consequences in neuronal contexts,42 and therefore we reason that module M2 and its 

constituent genes play a pivotal role in the gene-regulatory landscape of MHb neurons 

underlying the behavioral changes observed in our experiment. Altogether, this unbiased 

data-driven analysis identified networks of genes that are critical for MHb neuron identity, 

associated these networks with their underlying biological functions, and contextualized 

them in the MHb neurons of our behaviorally experienced NURR2C animals.

DISCUSSION

There is currently no Food and Drug Administration (FDA)-approved drug or treatment 

for substance use disorder that completely reduces the risk of relapse, encouraging basic 

science research investigations of the mechanisms that regulate relapse behavior. Therefore, 

understanding the brain regions and molecular mechanisms underlying relapse in substance 

use disorder is a perennial question for addiction research. Here, we add further evidence for 

considering the relatively understudied MHb as a key regulator of drug-seeking behavior 

with our finding that the MHb regulates relapse to cocaine-seeking behavior and that 

this regulation seems to be driven by functional NR4A2 within the MHb. Given its 

dense expression of nicotinic acetylcholine receptors, numerous studies have implicated the 

MHb in nicotine-associated behaviors.11–13 The MHb is functionally well positioned as a 

regulator of reward-associated behaviors,13 yet studies investigating MHb response to drugs 

of abuse at large are lacking. Our findings necessitate consideration of the MHb and NR4A2 

as pivotal contributors to drug-seeking behavior.

To understand the molecular mechanisms driving relapse-like behavior in the MHb, 

we focused on NR4A2, an epigenetically regulated TF and immediate-early gene that 

is highly expressed in the MHb. Reducing NR4A2 function using an endogenously 

occurring dominant negative (NURR2C) resulted in a near complete block of cue-induced 

reinstatement in the gold-standard model of relapse, intravenous cocaine self-administration, 

used here. These results are supported by our initial finding that MHb Nr4a2 regulates 

the expression of cocaine-conditioned place preference.14 Our current study extends these 

findings to a model of volitional drug seeking, lending face validity to the hypothesis that 

MHb Nr4a2 has a role in relapse behavior.

Advances in sequencing technology enabled consideration of the Nr4a2-dependent 

transcriptomic changes in this very small region using snRNA-seq. Our snRNA-seq dataset, 

the largest of its kind to date, demonstrated that Nurr2c altered the expression of many 

genes in almost all cell types, including several MHb neuron co-expression modules 

enriched with putative NR4A2-target genes, suggesting that NR4A2 is a key transcriptional 

regulator of downstream pathways involved in reinstatement. Importantly, we found that 

DEG signatures had little overlap between our behaviorally naive and experienced mice, 

indicating a specific response of Nurr2c following their treatment. Despite manipulating 

Nr4a2 only in MHb ChAT neurons, there are broad changes in gene networks related to 
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addiction, neuroplasticity, and GABAergic signaling that extend across multiple cell types in 

both the MHb and LHb. The highly relevant nature of the co-expression modules affected, 

their putative regulatory relationships with Nr4a2 in the broader MHb neuron TF regulatory 

landscape, and the spread of these transcriptional changes across cell types suggest that 

MHb Nr4a2 is positioned as an upstream master controller of relapse to cocaine seeking.

Limitations of the study

The experiments described in this paper were conducted in male mice only. This limitation 

was imposed by the technical difficulty and cost of the experiments. There are documented 

sex-specific effects in both MHb function and regulation of Nr4a2 by HDAC3 and, thus, 

investigating the role of MHb Nr4a2 in female relapse behavior is a high priority for our lab. 

When using short-read Illumina sequencing, different splicing isoforms of the same gene (in 

this case Nr4a2) are generally not distinguishable, and therefore all transcripts attributed to 

the Nr4a2 gene including Nurr2c are counted toward the expression of Nr4a2 as a whole. 

Thus, the increases in Nr4a2 expression (which is Nr4a2 + Nurr2c) found in NURR2C 

groups were interpreted as the expected Nurr2c expression rather than a paradoxical 

compensatory increase in Nr4a2 in response to the expression of its dominant negative. 

Supporting this interpretation, our analysis showed that Nr4a2 is not a putative target of 

NR4A2 (Table S3), and therefore we did not expect to see homeostatic responses in Nr4a2 
expression. Further, we would expect that any changes in Nr4a2 expression resulting from 

such a homeostatic response would be relatively similar in scale to changes in other DEGs, 

whereas the changes in Nr4a2 expression in our snRNA-seq analysis are much larger when 

compared to changes in other genes (Figures 4D and 5E), which is readily explained by viral 

overexpression of Nurr2c. Additional sequencing experiments could provide further context 

and clarity for the regulatory role of NR4A2 in the habenula. Single-cell long-read RNA-seq 

is a promising technology that enables the transcriptome-wide detection of different RNA 

isoforms with single-cell resolution.43,44 Furthermore, since we found that co-expression 

modules related to RNA splicing were altered in our behaviorally experienced modules, 

long-read RNA-seq in MHb neurons could potentially identify alternative splicing events 

that are critical in reinstatement. Epigenomic assays such as single-cell ATAC-seq could 

identify additional cell-type-specific NR4A2 regulatory relationships that are mediated by 

non-coding cis-regulatory elements such as enhancer-promoter interactions.45

As a nuclear orphan receptor and TF, NR4A2 is a promising target for pharmacological 

manipulation, as there are several compounds already approved by the FDA that putatively 

affect NR4A family function.17 As we consider applying these compounds toward relapse 

mitigation, it will be important to develop specific inhibitors that cross the blood-brain 

barrier and have appropriate kinetics and other determinants. In summary, these results place 

the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of MHb 

Nr4a2 as a key mechanism in driving relapse behavior.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Requests for resources, reagents, and further information should be 

directed to the lead contact, Dr. Marcelo Wood, mwood@uci.edu.

Materials availability—No materials were generated in this study.

Data and code availability

• All data included in this paper will be shared upon request by the lead 

contact. The raw sequencing data and the processed Seurat object for the 

habenula snRNA-seq dataset have been deposited into the National Center 

for Biotechnology Information Gene Expression Omnibus under the accession 

number GSE208081, which is publically accessible.

• All code used for data processing and analysis throughout the 

manuscript is available on GitHub (https://github.com/swaruplabUCI/

NURR2C_habenula_2022, https://doi.org/10.5281/zenodo.10638040).

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Male heterozygous ChAT-Cre mice (2–5 months old, Jackson Laboratories 006410) were 

then used to model relapse in a mouse self-administration paradigm. Animals were singly 

housed with free food and water access unless otherwise specified. Experiments were 

performed during the light cycle of a 12-h light/dark cycle. All experiments were conducted 

according to the National Institutes of Health guideline for animal care and use. Experiments 

were approved by the Institutional Animal Care and Use Committee of the University of 

California, Irvine. Behavior was performed in two cohorts that each included both groups. 

Littermates were split into both groups. Tissue for sequencing came from both cohorts. To 

avoid batch effects, all tissue was processed and sequencing at the same time.

METHOD DETAILS

Surgery

Medial habenula AAV infusion: Three weeks before behavior, 0.5 ml bilateral MHb 

infusions (M/L, ±0.35 mm; A/P, −1.5 mm; D/V; −3.0) of either AAV1-hSyn-DIO-GFP 

(GFP) or AAV1-hSyn-DIO-V5-NURR2C (NURR2C) were delivered stereotaxically using 

a 30 gauge Hamilton syringe (65459–01) and syringe pump (Harvard Apparatus Nanomite 

MA1 70–2217, 6ul/hr).

Jugular vein catheterization: One week before behavior, animals were implanted with an 

indwelling back-mounted jugular vein catheter for intravenous cocaine self-administration. 

Catheters were made by attaching silicone tubing (Silastic 508–001 0.30 mm ID, 0.64 mm 

OD) to a modified 22 gauge cannula (P1 Technologies C313G-5UP). A ‘sleeve’ of larger 

tubing (Silastic 508–003 0.64 mm ID, 1.19 mm OD) protected the tubing/cannula joint. The 
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catheter base was molded around the cannula with dental cement (Teets Denture Material 

223–3815, 223–4052) and mesh was added to the base while silicone glue was used to 

create a 1 mm ball ~1 cm from the beveled end of the tubing. Made with scissors above 

the right collarbone over visible pulsing, a ~0.5 cm incision gave access to the jugular 

vein, which was isolated using blunt dissection and ‘bookmarked’ with suture. The catheter 

base was implanted in a scalpel-made back incision and the tubing was guided through a 

subcutaneous tunnel into the neck incision site. After placing a spatula under the vein, a 

25 G needle punctured the vein, which was held open with fine tipped forceps. Serrated 

forceps were used to insert the tubing to the point of the silicone ball, which combined with 

a series of sutures around the tubing and vein (below the puncture, at the puncture, above 

the ball) anchored the implant in the neck. Superglue was used on all internal sutures and 

at the puncture site. During surgery, the cannula was connected to a syringe of flushing 

solution (heparinized saline, 100 USP/ml in 0.9% saline and enrofloxacin) which prevented 

air embolism, irrigated the vein, and enabled blood draws to verify placement (dark red, 

draws easily and continuously). On completion, the cannula was capped, and surgical staples 

and sutures were used to close the back and front incision sites, respectively. During 5–7 

days of recovery catheters were flushed daily to maintain catheter patency, which verified 

before and after the self-administration period by observing a 5–10 s sedation after infusing 

the fast-acting anesthetic propofol (propofol sodium, Patterson Vet). After recovery, animals 

were food restricted to 90% of presurgical weight over 3–4 days before the start of behavior. 

After a week of daily flushing, animals were extremely well handled.

Cocaine self-administration: Mice animals were allowed to self-administer cocaine in 

operant conditioning chambers (MedAssociates) in 12 daily 1-h sessions. Most animals 

acquired self-administration within the first session; otherwise, on the second day (and 

third if needed) levers were baited with a drop of condensed milk. Failing to acquire 

self-administration or having a malfunctioning catheter were exclusion criteria. Animals 

advanced to an FR2 schedule after four days of successful FR1 response, which was 

defined as at least 10 active lever presses on days three and four. During self-administration, 

active lever presses elicited a cocaine reward (8.5μg/kg/infusion) and a cue presentation 

(light/tone). There were no programmed consequences for inactive lever presses. Following 

self-administration, mice received a 30-day homecage withdrawal followed by a 5-h 

extinction session in which presses on the previously active lever were not rewarded or 

cued. Immediately after extinction, a 70 min cued reinstatement was induced with priming 

during first 10 min, (Figure 1F). During reinstatement presses on the previously active 

lever resulted in cue presentation but no reward. Self-administration and extinction were 

analyzed using a two-way repeated measures ANOVA (Prism 10, GraphPad Software 

Inc.). Reinstatement data were analyzed using a one-way ANOVA. p values < 0.05 were 

considered significant.

Protein and mRNA expression in MHb: To collect and preserve tissue, animals were 

euthanized via cervical dislocation (1 h after reinstatement for self-administration mice). 

Brains were rapidly extracted, flash frozen in dry-ice chilled isopentane, and stored at −80°C 

for future use.
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Immunohistochemistry: To characterize the expression of NURR2C, the V5 tag was 

visualized using immunohistochemistry. 20 μM coronal sections were made and slide-

mounted with a Leica CM 1850 cryostat. Slides were incubated in ice-cold 4% 

paraformaldehyde for 10 min, followed by 3 PBS rinses and 1 h in block (5% normal 

goat serum, 0.2% Triton X-100 in 1X PBS). Slides were incubated overnight in primary 

antibody solution (anti-V5 1:500 in block, Abcam), and then washed and transferred to 

secondary anti-rabbit (1:250 in block, Alexa Fluor goat anti-rabbit 488) for 1 h at room 

temperature. A 15-min DAPI (1:10,000 in PB, Invitrogen) incubation was used to provide 

a nuclear counterstain for slide scanner imaging. Slides were partially dried before being 

coverslipped (Vectashield) and sealed. Fluorescence images were taken on an Olympus slide 

scanner at 20× magnification.

In situ hybridization - BaseScope—We performed BaseScope to differentiate and 

visualize Nr4a2 and Nurr2c mRNA. 10 mM coronal sections were made and slide mounted 

with a Leica CM 1850 cryostat. Tissue was fixed in 4% PFA for 24 h and then cryoprotected 

in 10%, 20%, and 30% sucrose solution. We used the BaseScope Duplex Reagent Kit 

(Advanced Cell Diagnostics) and performed In Situ Hybridization using ZZ probes for 

Nr4a2 (ACD 1104881-C2) and Nurr2c (proprietary custom probe containing several exons 

specific to Nurr2c) following the manufacturer’s instructions for fresh frozen tissue. Slides 

were counterstained with hematoxylin and then coverslipped with VectaMount. Probes were 

visualized using an Olympus slide scanner.

Single-nucleus RNA-seq in the mouse habenula: Using a 0.5 mm biopsy punch and a 

dissecting microscope, the bilateral MHb were collected from two 400 μm slabs made 

on a Leica 1850 CM cryostat. From MHb biopsy punches, single nuclei were isolated 

on ice using nuclei EZ lysis (Millipore Sigma, Cat# NUC101-1KT) and NWR buffer 

(supplemented with 0.2U/ml RNase inhibitor) and counted with an automated cell counter 

(Countess 3 FL Automated Cell Counter). The nuclei were then loaded into the Chromium 

Next GEM chip G (10X Genomics Chromium Next GEM single cell 3’ Reagent kits 

v3.1) for GEM generation and barcoding. Following post GEM-RT cleanup and cDNA 

amplification, 3’ gene expression libraries were constructed, quantified, and sequenced (on 

the Illumina NovaSeq 6000 system) according to the manufacturer’s instruction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data are presented as mean ± SEM. p values < 0.05 were considered significant. 

Multi-day self-administration and multi-hour extinction data were analyzed using two-way 

repeated measures ANOVA. Single trial reinstatement data were analyzed using a one-

way ANOVA. The details of these analyses can be found in the Figure 1 caption and 

corresponding results section. These analyses were completed using Prism 10, GraphPad 

Software Inc. n = number of mice used per group. For snRNAseq analysis, detailed 

descriptions of the quantification and statistical analysis (including the software, specific 

statistical tests, thresholds, significant p values etc.) are provided below in this subsection. 

Where appropriate, N values and p values are defined in the figure legends. For snRNAseq 

analysis, n = number of samples per group. Samples were not pooled, and therefore each 

sample = 1 mouse and there were no technical replicates. Error bars = SEM. Any secondary 
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methods used to confirm that data met the assumptions of statistical approach are specified 

below where used.

Processing single-nucleus RNA-seq data and initial quality control—Cellranger 

count (v 6.0.0) was used to map snRNA-seq reads to the reference transcriptome (mm10 

2020-A, downloaded from the 10X Genomics website) to quantify gene expression in single 

nuclei from each sample. The ‘‘include-introns’’ option was used to account for unprocessed 

RNA molecules present in the snRNA-seq data. Ambient RNA signal, which adds can add 

considerable noise to single-cell transcriptomics data, was identified and corrected using 

Cellbender46 remove-background (v 0.2.0), a deep generative model designed to identify 

empty droplets and correct for artifactual counts in single-cell data. The likelihood of a 

droplet containing more than one cell for all cells in each sample were then computed 

using Scrublet v 0.2.347 with default settings, giving us a doublet probability and a binary 

prediction for whether the barcode was a doublet. Each sample was individually loaded into 

Scanpy v 1.8.1,48 and the samples were concatenated into a single AnnData48 (v 0.7.6) 

object, totaling 203,729 barcodes and 32,285 genes before quality control filtering. We 

initially removed barcodes that were in the top 2.5% of the number of UMIs, percentage of 

mitochondrial counts, and doublet probability for each sample, removing 15,937 barcodes. 

We then applied dataset-wide filters to remove barcodes with fewer than 250 genes, greater 

than 5% mitochondrial counts, and greater than 25,000 UMIs, removing 15,530 more 

barcodes. Predicted doublets from Scrublet were filtered, thereby removing an additional 

7,807 barcodes, and leaving 164,455 barcodes for our initial clustering analysis.

Dimensionality reduction, clustering, and additional filtering—The UMI counts 

matrix was normalized for each cell by the total UMI counts in all genes, and 

log transformed using the Scanpy functions sc.pp.normalize_total and sc.pp.log1p 

respectively. Highly variable genes (HVGs) were identified using the Scanpy function 

sc.pp.highly_variable_genes, and the data matrix comprising these HVGs were scaled to unit 

variance and centered at zero mean using the sc.pp.scale function. We performed principal 

component analysis (PCA) in this scaled data matrix using the sc.tl.pca function, yielding a 

linear dimensionality reduction of the snRNA-seq dataset. PCs were corrected for technical 

variation from sequencing batches using the Harmony algorithm49 in the harmonypy 

package (v 0.0.5). The top 30 harmonized PCs were used to construct a neighborhood 

graph of the nuclei using the sc.pp.neighbors function with a cosine distance metric and 

n_neighbors = 15. A two-dimensional representation of the data was then computed on this 

neighborhood graph using the uniform manifold approximation and projection26 (UMAP) 

algorithm with the Scanpy function sc.tl.umap. We performed an initial clustering analysis 

grouping nuclei into clusters in the same neighborhood graph representation using the 

Leiden algorithm25 with the function sc.tl.leiden and a resolution parameter of 2.0. Leiden 

clusters were organized hierarchically by similar expression profiles using the function 

sc.tl.dendrogram. We inspected the expression of canonical cell-type markers in each Leiden 

cluster to annotate broad cell types, and we noted that several Leiden clusters displayed 

conflicting marker gene expression, for example the expression of Plp1, Aqp4, and Csf1r in 

the same group. Further, we inspected the distributions of QC metrics in each Leiden cluster 

and determined that several clusters were outliers in these metrics and we removed these 
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low-quality clusters. We re-computed the UMAP and Leiden clustering (resolution 1.25) for 

this filtered dataset, and annotated broad cell types using a panel of known cell-type marker 

genes in the habenula.23,24 We next performed a sub-clustering analysis containing only 

neuronal cell types (Leiden resolution 0.75) and merged these results with the non-neuronal 

clusters to result in the final cell type annotations. The final processed dataset consisted of 

109,881 single nucleus transcriptomes grouped into 26 clusters.

Ex-vivo activation signature—We examined our dataset for gene expression hallmarks 

of ex vivo activation, which may indicate issues with sample preparation. For this analysis, 

we used the CNS ex vivo activation gene set from Marsh et al. 2022.66. (Fos, Junb, Zfp36, 

Jun, Hspa1a, Socs3, Rgs1, Egr1, Btg2, Fosb, Hist1h1d, Ier5, Atf3, Hist1h2ac, Dusp1, 

Hist1h1e, Forlr1, and Serpine1), and computed an ex vivo activation score for each cell 

using UCell50. Broadly, we found minimal evidence of ex vivo activation in our dataset.

Integration with the Hashikawa et al. habenula dataset—We collected the mouse 

habenula gene expression matrix from Hashikawa et al. 202023 using GEO (GSE137478), 

and we processed this dataset using the Hao et al. 2021 workflow51 (version 4.1.1). We 

performed PCA (RunPCA function) using the top 3500 HVGs from the Seurat function 

FindVariableFeatures, and the top 30 PCs were used to run UMAP (RunUMAP function). 

Cell-type and cluster annotations for this dataset were taken from the original study. The 

Hashikawa dataset was integrated with our habenula dataset using integrative non-negative 

matrix factorization (iNMF) implemented in the R package rliger.52 Prior to running 

iNMF, the gene expression matrices were scaled to unit variance, but not centered at 

zero since the integration algorithm relies on a non-negative matrix. We jointly reduced 

the dimensionality of the scaled expression matrices using 30 matrix factors with the 

default regularization parameter using the optimizeALS function, yielding an integrated 

low-dimensional representation of the cells from both datasets. We calculated the alignment 

of the two datasets in the integrated space using a nearest-neighbor approach to determine 

how frequently a given cell’s neighbors came from the same dataset with the calcAlignment 

function, and we report an alignment of 0.7777 on a scale from 0 to 1. Finally, we computed 

an integrated UMAP using the iNMF representation as input using the Seurat function 

RunUMAP.

Cluster marker gene analysis—We performed a one-versus-all differential gene 

expression test for each snRNA-seq cluster to identify cluster marker genes using the Seurat 

function FindAllMarkers. We used a hurdle model (MAST53) as our differential expression 

model, which explicitly models zero and non-zero entries separately, making it well suited 

to sparse single-cell data. We used sequencing batch assignment and total number of UMIs 

per cell as model covariates. Expression of habenula cell-type and cluster marker genes from 

previous publications23,24 were also inspected in our dataset.

Alternative splicing analysis at the Nr4a2 locus—While alternative splicing is a 

feature of many genes, conventional single-cell and single-nucleus RNA-seq on the Illumina 

platform are generally unable to accurately quantify the expression of individual isoforms 

of a given gene due to the short length of individual sequencing reads. The Nurr2c isoform 
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of Nr4a2 is marked by alternative splicing events at exons 3 and 7, but is similar in 

structure to other Nr4a2 isoforms, therefore it is difficult to attribute individual UMI counts 

to the Nurr2c isoform using current bioinformatic approaches. Nevertheless, we sought 

to inspect the snRNA-seq read coverage at the Nr4a2 locus in our dataset to potentially 

identify patterns that were specific to the NURR2C mice. For each of our snRNA-seq 

clusters, we constructed pseudobulk.bam files containing all the reads from each cell 

from a given cluster using Sinto (version 0.9.0). SAMtools55 (version 1.1.0) was used to 

combine pseudobulk.bam files from each individual sample into NURR2C and GFP groups. 

Pseudobulk.bam files were converted to.bigWig format using the bamCoverage function 

from deeptools54 (version 3.1.3). Using these.bigwig files, we visualized the Nr4a2 locus in 

the mm10 genome using the UCSC Genome Browser for the major neuronal cell types and 

individual clusters. We used Swan56 to summarize the splicing complexity of Nr4a2 and to 

demonstrate the differences at exon 3 and exon 7 between Nurr2c and the isoform that was 

most similar (ENSMUST00000112629.7). We used Swan’s plot_graph function to generate 

the gene summary graph for Nr4a2, and Swan’s plot_transcript_path function to generate the 

graphs for individual isoforms.

NURR2C transcriptomic perturbation analysis—We performed an unbiased 

transcriptomic perturbation analysis in the habenula snRNA-seq dataset using the graph 

signal processing algorithm MELD36 to estimate the transcriptome-wide effect of Nurr2c 

on each cell. This analysis was performed only in the snRNA-seq data from animals in 

the behavior group. The MELD python package (version 1.0) was used for this analysis. 

A 3D PHATE57 representation of the dataset was computed based on the harmonized 

PCA matrix. We performed a grid search to optimize the MELD parameters k and b 

using a benchmarking test where transcriptomic perturbations were simulated in the dataset, 

performing 25 of these tests for each parameter settings. A random conditional density 

function (PDF) serves as the ground truth for the simulated perturbation, and the mean 

square error (MSE) computed between the estimated relative likelihood from MELD 

compared to the ground truth PDF. MSEs were averaged over 25 tests for each set of 

parameters. Based on this parameter search, we used k = 24 and β = 49 as the set of 

parameters which achieved the lowest MSE in the simulations. The MELD function was 

then used with these parameters to quantify the transcriptomic perturbation in our dataset.

Context-specific transcription factor regulatory network inference and 
analysis—We developed a bioinformatic method for inferring transcription factor (TF) 

regulatory networks in single-cell or single-nucleus RNA-seq data, and applied this 

method to our habenula snRNA-seq dataset. The goal of this analysis is to identify 

potential regulatory links between TFs and their target genes based on patterns observed 

in a single-cell dataset. In general, the strategy we employed here is similar to other 

algorithms accomplishing related tasks like the single-cell regulatory network inference 

and clustering (SCENIC58) algorithm, however our approach is distinguished by several 

important considerations. Our approach can be broken down into five key steps; 1: compute 

de-noised metacell expression profiles from the single-cell dataset; 2: scan gene promoters 

for presence of TF motifs; 3: model gene expression as a function of TF expression; 4: 

assemble TF regulons and regulatory networks; 5: downstream analysis of TF regulatory 
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networks. TF regulatory regimes may differ between different cell types, cell states, 

experimental conditions, and other biological variables of interest. Therefore, in our analysis 

we repeat this network inference process separately for different contexts to facilitate 

downstream comparisons, as opposed to other network analysis methods that operate on all 

cell types and conditions grouped together. Here we provide an open source implementation 

of this TF regulatory network inference algorithm as an addition to the hdWGCNA R 

package.59

Single-cell gene expression data is inherently sparse, meaning that majority of genes have 

zero expression in a given cell. Since distinct cell types have unique gene expression 

programs, we expect that these zero expression genes have a biological origin, but there are 

also well known ‘‘dropout’’ events where transcripts are missed in the sequencing process 

ultimately leading to an additional technical origin of zero expressed genes. These problems 

can be further compounded in snRNA-seq where only the RNA in the nucleus is sequenced, 

representing only a fraction of the RNA in the whole cell. The sparsity and noise typically 

found in single-cell data poses significant challenges for robust network inference. Metacell 

aggregation approaches aim to alleviate this problem by constructing merged transcriptomic 

profiles of highly similar cells in a k-nearest neighbors (KNN) graph, thereby retaining the 

transcriptomic heterogeneity of the dataset while reducing sparsity and technical noise. For 

this analysis, we computed metacells using an algorithm that we previously developed as 

part of the hdWGCNA59 R package in the MetacellsByGroups function, but in principle 

other metacell algorithms could be used in its place. This metacell aggregation step is 

critical for our analysis and is also a strength of our pipeline compared to others.

Second, our algorithm requires a database of TF motifs and their position weight matrices 

(PWMs). In our analysis, we used the JASPAR motif database.60,61 2020 R package 

(version 0.99.10), but in principle any other database of TF motifs and PWMs could be 

used. For each TF in the database, we used the R package motifmatchr (version 1.12.0) 

to search for significantly matching motifs based on the PWM information within gene 

promoter regions for all genes in the single-cell dataset, yielding a mapping of TFs to their 

potential target genes. In principle, enhancer regions linked to target genes via multi-omic 

analysis could also be used for motif scanning if this additional information is available,67 

enabling enhancer-mediated TF regulatory network analysis. We implemented this step in 

the hdWGCNA function MotifScan.

Third, we use the initial TF-gene mappings to identify highly confident TF-gene regulatory 

links by modeling each gene’s expression based on the expression of its potential TF 

regulators. For example, if a given gene called ‘‘Gene X’’ has 10 matching TF motifs 

in its promoter, we build a regression model of the expression of ‘‘Gene X’’ based on 

the expression of the 10 matching TFs as input features. To facilitate this modeling, we 

used a powerful ensemble machine learning approach called extreme gradient boosting 

(XGBoost62), and for this analysis we performed 5-fold cross validation and averaged 

the performance statistics across these folds. This analysis assigns a weight to each TF 

based on how important it was for the model for a particular gene. In this step, we build 

separate XGBoost models for each gene, resulting in a set of TF regulatory importance 

weights for each gene. Critically, this approach was done on the de-noised metacell 
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expression representation rather than on the single-cell dataset itself, leading to more robust 

inference of TF-gene regulatory links. We implemented this step in the hdWGCNA function 

ConstructTFNetwork.

Fourth, we use the weighted TF importance scores to define ‘‘TF regulons’’, which are 

the set of confident putative target genes for each TF. Based on the approach from Aibar 

et al., for each gene we retained the top five TFs by their weights, with a minimum 

threshold of 0.001, to define regulons for each TF. For certain downstream analyses like 

pathway enrichment analysis, we used a wider set of TF regulons by retaining the top ten 

TFs by weight for each gene. The sets of regulons were then split based on the sign of 

the Pearson correlations between the metacell expression of the TF and the target gene, 

giving us putative activated targets (positive TF-gene correlation) and putative repressed 

targets (negative TF-gene correlation). This process yields weighted links between TFs 

and confident target genes, ultimately representing a full TF regulatory network. Since we 

perform this analysis separately for different contexts (cell types, experimental groups), 

and since these contexts can be flexibly defined by the user, this approach is able to 

identify TF regulatory relationships that are unique to a condition of interest or conserved 

across multiple groups/conditions. In our analysis, we used this approach to construct TF 

regulatory networks for the MHb and LHb neuron groups for the four experimental groups 

(NURR2C, GFP, Naive NURR2C, Naive GFP).

After performing TF regulatory network inference, we performed several downstream 

analyses focusing on subgraphs within these networks that were important for understanding 

the regulatory capacity of NR4A2. We computed NR4A2 regulon scores, summarizing the 

gene expression of the entire set of genes within the NR4A2 regulon, using the UCell 

algorithm.50 We performed pathway enrichment analysis using the R package enrichR63 

(version 3.0) in the putative activating and repressing target genes in the networks from 

MHb neurons in the NURR2C and Naive NURR2C experimental groups, using the 

following gene annotation lists: GO Biological Process 2021, GO Cellular Component 2021, 

GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG 2019 Mouse.

Finally, as part of our TF regulatory network analysis pipeline we developed a recursive 

approach to identify indirect TF targets that are part of the overall network. TFs can regulate 

the expression of other TFs, which can thereby impart meaningful yet indirect changes on 

the expression of genes outside of the TF’s primary regulon of direct targets where the TF 

acts through gene promoters. For a given TF of interest, in our case NR4A2, we identified 

the primary target genes in that TF’s regulon which are also TFs. The set of target genes of 

those TFs are then considered secondary targets of NR4A2. This process can be arbitrarily 

repeated to identify tertiary targets and so on, but in our study of NR4A2 we only used this 

approach to define secondary targets.

Differential gene expression comparing NURR2C and GFP. We performed differential 

gene expression analysis comparing cells from NURR2C and GFP animals within each 

cell cluster and each major cell type. We used MAST53 as our differential expression 

model, with sequencing batch assignment and total number of UMIs per cell as model 

covariates. The Seurat function FindMarkers was used to facilitate this analysis. This 
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differential expression analysis comparing NURR2C and GFP was performed separately 

for the behavior and naive experimental groups. We compared the results of these DEG tests 

between the MHb and LHb neuronal cell types by performing rank-rank hypergeometric 

overlap (RRHO64) tests for each pair of neuron types, repeating the analysis for NR4A2 

target genes and other DEGs. For RRHO analysis, genes were ranked by average log2(fold 

change), and we visualized the FDR-corrected RRHO p values as a heatmap to visualize 

the agreement of gene sets ranked by the DEG effect size. In the RRHO heatmaps, genes 

are ranked from high to low log2(fold change) from left to right on the x axis and from 

bottom to top on the y axis, such that the lower left quadrant shows the agreement of 

up-regulated genes while the upper-right quadrant shows the agreement of down-regulated 

genes. Similarly, we generated scatterplots comparing the DEG effect sizes for the NURR2C 

vs. GFP comparisons between the behavior and naive groups, and we also performed gene 

set overlap analysis to compare significantly up- and downregulated DEGs within these 

groups (adjusted p value <0.05 and absolute log2(fold change) > 0.25). We used the R 

package enrichR63 (version 3.0) to perform enrichment analysis for the DEGs in each 

cluster, using the following gene annotation lists: GO Biological Process 2021, GO Cellular 

Component 2021, GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG 

2019 Mouse.

Co-expression network analysis in medial habenula neurons—We performed 

gene co-expression network analysis in medial habenula neurons from the NURR2C and 

GFP experimental groups using the R package hdWGCNA68,65 (version 0.1.1, WGCNA 

version 1.70.3). Genes expressed in fewer than 5% of cells were excluded from this 

analysis, giving us a set of 10,084 genes for hdWGCNA. For each cell type and 

biological replicate, we performed a bootstrapped cell aggregation procedure to construct 

metacell gene expression profiles, pooling 50 cells together per metacell based on K-nearest-

neighbors using the hdWGCNA function MetacellsByGroups. We sought to select a soft 

power threshold β such that the resulting network has a scale-free topology, therefore we 

performed a parameter sweep for β using the hdWGCNA function TestSoftPowers. We 

computed a topological overlap matrix (TOM) to represent the gene co-expression network 

and grouped genes into co-expression modules with the Dynamic Tree Cut. algorithm69 

using the hdWGCNA function ConstructNetwork. The following parameters were used 

during network construction: networkType = “signed”, TOMType = “signed”, soft_power 

= 6, deepSplit = 4, detectCutHeight = 0.995, minModuleSize = 50, mergeCutHeight = 0.2. 

To summarize the gene expression of each co-expression network module, we computed 

module eigengenes (MEs) with the hdWGCNA function ModuleEigengenes, applying 

Harmony49 to the resulting MEs based on sequencing batch assignment. Eigengene-based 

connectivity (kME) was then computed for each gene and each module using the 

hdWGCNA function ModuleConnectivity, allowing us to identify hub genes for each 

module. A UMAP representation of the co-expression network was constructed with the 

hdWGCNA function RunModuleUMAP, with ten hub genes per module as the input 

features. We performed differential module eigengene (DME) testing to compare the 

expression signatures of each module between the NURR2C and GFP groups within 

each of the five MHb neuron clusters. DME testing was performed using the hdWGCNA 

function FindDMEs, using a Wilcoxon rank-sum test for the comparison. To assess the 
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reproducibility of the medial habenula neuron co-expression network, we performed a 

comparative analysis using the Hashikawa et al.23 dataset. Co-expression modules were 

projected into the Hashikawa dataset using the hdWGCNA function ProjectModules, and we 

performed a statistical test to assess network preservation69 using the hdWGCNA function 

ModulePreservation. We used the R package enrichR63 (version 3.0) to perform enrichment 

analysis comparing our MHb neuron co-expression modules to curated gene sets, using 

the following gene annotation lists: GO Biological Process 2021, GO Cellular Component 

2021, GO Molecular Function 2021, WikiPathways 2019 Mouse, and KEGG 2019 Mouse. 

We also integrated the TF regulatory network information with the co-expression network 

information. We counted the number of activating and repressing TF-gene links that span 

across different co-expression modules to quantify the regulatory relationships between co-

expression modules. We also computed normalized module regulatory strength by dividing 

the number of TF-gene links between a source module and a target module by the total 

number of TFs within the source module.

Gene overlap analysis—Throughout this manuscript, we performed overlap analyses to 

compare different sets of genes. We used the R package GeneOverlap (version 1.26.0) for 

these analyses, which calculates the overlap between sets of genes, using Fisher’s exact test 

to determine a p value and odds ratio comparing to the genomic background set (all genes in 

the Seurat object).
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Highlights

• Medial habenula NR4A2 regulates relapse to cocaine seeking in mice

• NR4A2 is a major upstream regulator of many genes within the medial 

habenula

• Identification of putative NR4A2 targets and regulatory networks
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Figure 1. Expression of Nr4a2 dominant negative Nurr2c in cholinergic medial habenula neurons 
reduces reinstatement of cocaine seeking
(A) Experimental timeline. After receiving infusion and catheter surgeries, mice self-

administered cocaine for 12 days in operant conditioning chambers (D1-12). During self-

administration, active lever presses resulted in a cocaine reward (8.5 μg/kg/infusion) plus 

a tone/light cue presentation. After 12 days of self-administration, mice experienced a 

30-day homecage withdrawal period. Mice were then extinguished in a single 5-h extinction 

session, in which lever presses were inconsequential. Reinstatement was then induced by 

exposing mice to the drug-paired cues for 10 min preceding a 1-h cued reinstatement 

session, during which lever presses elicited cues but no cocaine rewards. Animals were 

sacrificed, and tissue was collected 1 h after reinstatement.

(B) Schematic of Nurr2c viral delivery to MHb and expression. Protein expression, fused V5 

tag (green) compared to DAPI (blue). Scale bar, 100 μm.

(C) Transcript expression, BaseScope of MHb showing Nr4a2 (red) and Nurr2c (green) 

transcripts in GFP mice (left) and Nurr2c mice (right).

(D) Cocaine self-administration followed by 30-day homecage withdrawal. Data analyzed 

using two-way repeated-measures ANOVA. Error bars denote SEM. GFP males n = 10, 

NURR2C males n = 14.

(E) Five-hour extinction session. Data analyzed using two-way repeated-measures ANOVA. 

Error bars denote SEM. GFP males n = 10, NURR2C males n = 14.

(F) Cued reinstatement. Gray circles indicate included in snRNA-seq analysis. Data 

analyzed using one-way ANOVA. Error bars denote SEM. **p < 0.01.
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Figure 2. Single-nucleus RNA-seq of the mouse habenula to study the role of Nr4a2 in 
reinstatement of cocaine seeking
(A) Uniform manifold approximation and projection (UMAP) plot where points correspond 

to individual nuclei for 109,881 nuclei profiled with snRNA-seq in the mouse habenula. 

Points are colored by Leiden cluster assignment, and major cell types are annotated.

(B) Heatmap showing the scaled gene expression of the top five marker genes by average 

log2(fold change) from each of the 21 snRNA-seq clusters, based on a one-versus-all 

iterative marker gene test for each cluster using a hurdle model (MAST).

(C) UMAP plot as in (A) colored by normalized expression of Nr4a2, split by nuclei 

from the behavior (left) and naive (right) groups and by NURR2C (top) and GFP (bottom) 

treatment.

(D) Violin plots showing distributions of normalized gene expression for Nr4a1, Nr4a2, 

Nr4a3, and Chat, stratified by experimental groups. Two-sided Wilcoxon test was used to 
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compare NURR2C with GFP samples within the behaviorally experienced and naive groups. 

Not significant, p > 0.05; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

(E) UCSC Genome Browser snapshot of the Nr4a2 locus. Normalized snRNA-seq read 

pileup is shown for medial habenula (MHb) neurons, stratified by the four mouse groups. 

Gene models from the GENCODE VM23 comprehensive transcript set are shown below 

the coverage tracks, highlighting the Nurr2c isoform of Nr4a2 (ENSMUST00000183542.7). 

Exons 3, 7, and 8 are highlighted to showcase the distinct features of the Nurr2c isoform.
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Figure 3. Transcription factor regulatory networks in MHb neurons reveal group-specific 
NR4A2 target genes
(A) Schematic of our TF regulatory network analysis strategy. We scanned gene promoters 

for TF motifs to define potential TF-gene relationships. We next used a regression model 

to predict the expression of each gene based on the expression of TFs with motifs present 

in that gene’s promoter. The top five most predictive TFs for each gene were retained to 

define the set of putative target genes for each TF (regulons), which we used to assemble TF 

regulatory networks.

(B) UMAP of the snRNA-seq dataset colored by UCell gene expression scores for NR4A2 

target genes in MHb neurons in experienced and naive NURR2C groups.

(C) NR4A2 regulatory network in MHb neurons from the experienced NURR2C group. 

Nodes represent individual genes and are colored based on their relationship with NR4A2. 

Directed edges represent TF regulatory relationships, colored by TF-gene gene expression 

correlation.
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(D) Network plot as in (C) for the experienced GFP group.

(E) Bar plots showing the number of primary and secondary NR4A2 target genes identified 

in the NURR2C and GFP groups in the experienced mice. (F and G) Network plot like that 

shown in (C) for the naive NURR2C (F) and naive GFP (G) groups.

(H) Bar plots as in (E) for the networks from the naive mice.

(I and J) Selected pathway enrichment results for NR4A2 target genes identified in 

NURR2C for the experienced (I) and naive (J) groups. Results shown for target genes with 

negative (left) and positive (right) gene expression correlations with Nr4a2.
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Figure 4. Transcriptomic changes in habenula neurons following NURR2C perturbation in 
behaviorally naive mice
(A and B) Volcano plots showing NURR2C vs. GFP differential gene expression results in 

MHb (A) and LHb (B) neurons. Top five up- and downregulated DEGs by log2(fold change) 

are annotated. Genes are stratified by NR4A2 target gene status.

(C) Rank-rank hypergeometric overlap (RRHO) heatmaps comparing effect sizes from 

NURR2C vs. GFP differential expression tests between the MHb and LHb groups. Pearson 

correlation coefficients are shown.

(D) Euler diagrams showing overlap of DEGs up- and downregulated in NURR2C from the 

MHb and LHb neuron analyses. Fisher’s exact test statistics for the overlaps are shown.

(E) Bar plot showing the number of DEGs (absolute log2(fold change) > 0.25 and adjusted p 

< 0.05) stratified by NR4A2 target gene status.

(F–H) Selected pathway enrichment results for genes upregulated in LHb neurons (F), 

downregulated in MHb neurons (G), and upregulated in MHb neurons (H).
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Figure 5. NURR2C induces transcriptomic changes in habenula neurons
(A) MELD relative likelihood analysis to quantify the effect of the Nurr2c transcriptomic 

perturbation in single nuclei. Box-and-whisker plots are shown for relative likelihood scores 

in each cluster. Clusters are ordered by median MELD scores for neuronal and non-neuronal 

groups.

(B and C) Volcano plots showing NURR2C vs. GFP differential gene expression results in 

MHb (B) and LHb (C) neurons. Top five up- and downregulated DEGs by log2(fold change) 

are annotated. Genes are stratified by NR4A2 target status.

(D) Rank-rank hypergeometric overlap (RRHO) heatmaps comparing the effect sizes from 

NURR2C vs. GFP differential expression tests between the MHb and LHb groups. Pearson 

correlation coefficients are shown.

(E) Euler diagrams showing the overlap between DEGs up- and downregulated in NURR2C 

from the MHb and LHb neuron analyses. Fisher’s exact test statistics for the gene set 

overlaps are shown.

(F and G) Selected pathway enrichment results for genes downregulated (log2(fold change) 

< −0.25) in MHb neurons and selected for genes upregulated (log2(fold change) > 0.25) in 

LHb neurons.

(H) Bar plot showing the number of DEGs (absolute log2(fold change) > 0.25 and adjusted p 

< 0.05) stratified by NR4A2 target gene status.

(I and J) Comparison of differential expression effect sizes from NURR2C vs. GFP between 

the experienced and naive groups. Genes that are consistently or inconsistently up- or 

downregulated are colored blue or green, respectively, and the number of genes in these 
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groups are shown in the corners of each plot. (K and L) Euler diagrams showing the overlap 

between DEGs up- and downregulated in NURR2C from the experienced and naive groups 

for MHb neurons (K) and LHb neurons (L). Fisher’s exact test statistics for overlaps are 

shown.
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Figure 6. Co-expression network analysis of MHb neurons reveals addiction-associated gene 
modules
(A) UMAP of the gene co-expression network in MHb neurons from the behaviorally 

experienced animals. Nodes represent genes, colored by module assignment, and the top 

three hub genes are annotated for each module as well as other selected genes. Edges 

represent co-expression relationships (downsampled for visual clarity).

(B) snRNA-seq UMAP plot of the MHb neuron population colored by module eigengene 

(ME) for each co-expression module. Bottom right UMAP plot shows the same UMAP 

colored by the five MHb neuron clusters.

(C) Selected GO-term enrichment results for each co-expression module.

(D) Violin plots showing MEs in each MHb neuron cluster, with median values marked with 

a horizontal line.

(E) Heatmap showing differential module eigengene (DME) results comparing NURR2C vs. 

GFP for each module in each MHb neuron cluster. Wilcoxon rank-sum test was used for the 
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comparison with Bonferroni p value adjustment: not significant, p > 0.05; *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001, ****p ≤ 0.0001.

(F) Left: bar chart showing the number and proportion of NR4A2 target genes in each 

module. Right: gene overlap statistics from Fisher’s exact test for modules and NR4A2 

targets. 3 denotes p > 0.05.

(G) TF-TF regulatory network showing Nr4a2 and its putative primary and secondary targets 

in NURR2C MHb neurons, shown on the co-expression UMAP as in (A). Nodes (genes) are 

colored by module assignment. Edges are directed and represent directed TF-TF regulation. 

Primary NR4A2 targets are labeled, and outgoing edges from secondary NR4A2 targets are 

not shown. Non-TF genes are shown in the background.

(H) Bar plot showing the ranking of 29 TF-coding genes that were primary NR4A2 ranked 

by regulatory scores.

(I) Heatmaps showing TF-TF interaction strength between co-expression modules. 

Interactions are split between activating and repressing based on the sign of the TF-TF 

correlations. Bottom heatmap shows the difference between activating and repressing.

(J) Dot plot of scaled gene expression of the 29 primary NR4A2 target TF-coding genes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-V5 Abcam ab206566; RRID:AB_2819156

Goat Anti-Rabbit Alexa Fluor 488 Abcam ab150077; RRID:AB_2630356

Bacterial and virus strains

AAV1-hSyn-DIO-GFP a gift from Bryan Roth, unpublished Addgene 50457-AAV1

AAV1-hSyn-DIO-V5-NURR2C UCI CNCM Viral Core MW174

Chemicals, peptides, and recombinant proteins

Cocaine-HCl Sigma-Aldrich C5776

Antifade mounting medium Vectashield H-1400

DAPI Invitrogen D1306

Propofol sodium Patterson Vet 07-892-9787

Critical commercial assays

Nuclei Isolation Kit: Nuclei EZ Prep Millipore Sigma NUC101-1KT

Chromium Next GEM single cell 3’ 
Reagent kits v3.1

10X Genomics PN-1000127

BaseScope Duplex Reagent Kit ACD Bio-Techne 323800

Deposited data

Raw snRNAseq data and Seurat object This study https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE208081

Experimental models: Organisms/strains

Mouse: ChAT-IRES-Cre The Jackson Laboratory IMSR_JAX:006410

Oligonucleuotides

BaseScope Probe BA-Mm-nurr2c-2zz-
C1

ACD Bio-Techne 1104981-C1

BaseScope Probe BA-Mm-Nr4a2-3zz-
st-C2

ACD Bio-Techne 1104881-C2

Software and algorithms

Cellranger count (v 6.0.0) 10X Genomics N/A

CellBender Fleming et al.46 https://doi.org/10.1038/s41592-023-01943-7

Scrublet Wolock et al.47 https://doi.org/10.1016/J.CELS.2018.11.005.

SCANPY and Anndata Wolf et al.48 https://doi.org/10.1186/S13059-017-1382-0/
FIGURES/1

Harmony Korsunsky et al.49 https://doi.org/10.1038/s41592-019-0619-0

UCell Andreatta et al.50 https://doi.org/10.1016/J.CSBJ.2021.06.043
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REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat v4 Hao et al.51 https://doi.org/10.1016/J.CELL.2021.04.048

rliger Welch et al.52 https://doi.org/10.1016/J.CELL.2019.05.006

MAST Finak et al.53 https://doi.org/10.1186/S13059-015-0844-5/
FIGURES/6

deepTools2 Ramírez et al.54 https://doi.org/10.1093/NAR/GKW257

Sinto Python Preferred Installer Program https://github.com/timoast/sinto

SAMtools Li et al.55 https://doi.org/10.1093/BIOINFORMATICS/BTP352

Swan Reese et al.56 https://doi.org/10.1093/BIOINFORMATICS/
BTAA836

PHATE Moon et al.57 https://doi.org/10.1038/s41587-019-0336-3

SCENIC Aibar et al.58 https://doi.org/10.1038/nmeth.4463

hdWGCNA Morabito et al.59 https://doi.org/10.1016/J.CRMETH.2023.100498

JASPAR 2020 Fornes et al.60 https://doi.org/10.1093/NAR/GKZ1001

JASPAR Sandelin et al.61 https://doi.org/10.1093/NAR/GKH012

XGBoost Chen et al.62 https://doi.org/10.1145/2939672

Enrichr Chen et al.63 https://doi.org/10.1186/1471-2105-14-128/
FIGURES/3

RRHO Plaiser et al.64 https://doi.org/10.1093/NAR/GKQ636

WGCNA Langfelder et al.65 https://doi.org/10.1186/1471-2105-9-559/FIGURES/4

GeneOverlap https://doi.org/10.18129/
B9.bioc.GeneOverlap

RRID:SCR_018419

This study https://doi.org/10.5281/zenodo.10638040
https://github.com/swaruplabUCI/
NURR2C_habenula_2022

R (version 4.0.0) r-project.org N/A

Prism GrpahPad Inc. N/A

MedPCV Med-Associates N/A

BioRender BioRender N/A

Other

30 gauge Hamilton syringe Hamilton Company 65459-01

Nanomite syringe pump Harvard Apparatus MA1 70-2217

22 gauge cannula P1 Technologies C313G-5UP

Silicone tubing (001 0.30 mm ID, 0.64 
mm OD)

Silastic 508-001

Silicone tubing (0.64 mm ID, 1.19 mm 
OD)

Silastic 508-003

Dental cement Teets Denture Material 223-3815, 223-4052

Cryostat Leica 1850 CM

Operant conditioning chambers MedAssociates ENV-307A-CT, ENV-022MD, PHM-100

Countess™ 3 FL Automated Cell 
Counter

Fisher AMQAF2000

Illumina NovaSeq 6000 Illumina N/A

Olympus slide scanner Olympus VSBX61
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