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Abstract 

Ribosomal DNA (rDNA) genes are essential components of the ribosome, organized 
as tandem repeats on the mammalian genomes. Extensive genetic and copy number 
variation in rDNA has been reported both within and between individuals, 
contributing to phenotypic diversity. However, previous rDNA variant calling 
strategies have relied on methods designed for diploid regions and have not been 
systematically benchmarked. With the recent availability of a telomere-to-telomere 
(T2T) genome assembly, rDNA regions have been fully assembled for the first time, 
enabling benchmarking and optimization of rDNA variant calling strategies. We 
developed a customized simulator that replicates real intra- and inter-individual rDNA 
variation based on the T2T assembly to benchmark the performance of commonly 
used variant callers, including GATK, Mutect2, and Lofreq. Additionally, we optimized 
the preprocessing and mapping steps to remove pseudogenes and significantly 
improve accuracy. Based on these optimizations, we introduce rDNAcaller, a novel 
pipeline for accurate rDNA variant detection using short-read whole-genome 
sequencing. rDNAcaller integrates optimized preprocessing with the top-performing 
variant caller and achieves 94% precision on experimental data from the T2T cell 
line. Applying our pipeline to data from the 1000 Genomes Project, we identify 5,607 
novel rDNA variant positions across human populations, with African individuals 
showing the highest number of variants. Overall, rDNAcaller is a robust and versatile 
tool for analyzing rDNA variation, addressing the limitations of existing methods in 
handling high ploidies. By enabling accurate detection of rDNA variants, it facilitates 
deeper exploration of rDNA’s role in phenotypic diversity, supporting future genomic 
studies and broadening our understanding of rDNA biology in health and disease. 
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Introduction  
 
The ribosome is the cellular machinery responsible for protein synthesis. It is 
composed of ribosomal proteins and ribosomal RNAs (rRNAs). The 5S rRNA is 
encoded in chromosome 1. The 18S, 5.8S and 28S rRNAs are encoded together by 
the 45S ribosomal DNA (rDNA), which is organized in tandem repeats on the short 
arms of human acrocentric chromosomes (13, 14, 15, 21, and 22). (Fig. 1A) (1, 2). 
The total number of these rDNA repeats, known as rDNA copy number, varies widely 
among individuals, ranging from 100 to 600 copies (3, 4). 
 
Notably, the rDNA copies are not identical, resulting in substantial inter- and 
intra-individual genetic variation (5, 6). Different rDNA variants have been shown to 
have tissue-specific expression patterns (7, 8) and to be associated with specific 
phenotypes, such as body size (9). However, previous efforts to call rDNA variants 
have lacked comprehensive benchmarking (6–8, 10) and therefore focus mostly on 
common variants. This means that the effect of population on rDNA variation and the 
association between rDNA copy number and rDNA genetic variation remain 
underexplored (11). This limitation is primarily due to the absence of datasets with 
known rDNA sequences that could be used as gold standards, since genome 
assemblies have historically excluded highly repetitive regions such as rDNA. The 
advent of long-read sequencing technologies has recently enabled the assembly of 
the first complete telomere-to-telomere human genome (5). This assembly includes 
the rDNA regions, allowing for the first time the benchmark of a pipeline designed to 
call rDNA variants. 
 
Here, we present rDNAcaller, a pipeline designed for accurate rDNA variant calling 
from short-read sequencing data. We first create a custom simulator to generate 
rDNA reads from samples with diverse rDNA copy numbers and genetic variants. 
We use this simulated dataset to benchmark three variant callers and optimize our 
pipeline. rDNAcaller integrates fast preprocessing and mapping strategies that 
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exclude rDNA pseudogenes and employs the top-performing rDNA variant caller, 
achieving an F1 score of 96%. Additionally, we evaluate the pipeline’s performance 
using WGS from the same cell line of the T2T assembly, for which the rDNA 
sequences are assembled and achieve 94% accuracy. Finally, we apply rDNAcaller 
on the 1000 Genomes Project dataset, identifying thousands of novel rDNA variants 
across human populations. 
 
 
 
Methods: 
 
Pre-processing and mapping in rDNAcaller 
 
The first step of the rDNAcaller pipeline is to extract candidate rDNA reads from the 
FASTQ files of whole-genome sequencing (WGS) data using the function nucmer 
from MUMmer (12) (Fig. 1B). This function parses a FASTQ file and selects the 
reads that match a reference sequence contiguously for a minimum nucleotide 
length. The rDNAcaller pipeline selects only paired-end reads that both match at 
least 30 consecutive nucleotides to the rDNA reference sequence using the 
parameters “-maxmatch -l 30”. The rDNA reference sequence, named chromosome 
R (chrR), has a total length of ~45 kb, including the 13.4 kb transcribed region, the 
45S rRNA (13). This MUMmer step speeds up the mapping and variant calling while 
removing reads from rDNA pseudogenes (see Results). 
 
We then map the selected candidate rDNA reads to a modified version of the 
CHM13-T2T genome (5), specifically designed to analyze rDNA (13). This is a 
publicly available modified CHM13-T2T genome reference that contains all rDNA-like 
regions masked, and a single rDNA reference sequence appended as a separate 
chromosome, the chrR (13). We map the candidate rDNA reads using bwa mem (Li 
et al. 2013) and we use samtools (14) to keep the uniquely mapped and properly 
paired reads to the chromosome R rDNA reference sequence. 
 
rDNA sequence simulator 
 
To benchmark available variant callers and include the top-performing one in 
rDNAcaller, we created an rDNA sequence simulator capable of closely replicating 
true rDNA variation (Fig. 1C). In each run, the simulator first creates a catalog of 
random variants on the chrR reference sequence (13). The number of variants, 
along with all other parameters, can be specified by the user. Specifically, we 
generate 300 single nucleotide variants (SNVs), 50 insertions and 50 deletions of 
size ranging from 2 to 7 base pairs. Next, the simulator creates 50 distinct rDNA 
sequences, each containing 50 random variants from the catalog. From this catalog, 
it then generates 100 samples, each containing between 5 to 20 distinct rDNA 
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sequences, with copy numbers ranging between 1 to 100 copies per distinct 
sequence. The total copy number per sample is constrained between 100 and 600 
copies. The output of this step is a FASTA file for each sample containing all 
generated rDNA sequences. In addition, the simulator adds all rDNA-like regions of 
the hg38 genome reference, which include pseudogenes described in (13) to each 
generated FASTA file. This step ensures that both rDNA copies and rDNA 
pseudogenes are simulated, reflecting real genomic conditions where the presence 
of pseudogenes may lead to increased false positives. Finally, we use NEAT (15) to 
simulate Illumina next-generation sequencing reads from the generated FASTA files, 
incorporating sequencing errors. Specifically, we simulate 151 bp paired-end reads 
at 30X coverage. 
We ran 50 simulations with the parameters described above, which were selected to 
reflect rDNA variation observed in experimental data (3, 4).  
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Figure 1. rDNA organization and pipeline diagrams. A. Overview of the ribosomal 
DNA chromosomal organization. rDNA genes are located in the short arms of the 
acrocentric chromosomes in tandem repeats. The 45S rRNA operon is transcribed 
as a single transcript and then 18S, 5.8S and 28S are post-transcriptionally 
processed to be incorporated into the ribosome as separate transcripts. The external 
and internal transcribed spacers (ETS/ITS) are not incorporated in the ribosome. The 
5S is encoded separately in chromosome 1. B. Processing steps of the rDNAcaller 
pipeline. Lighter color boxes indicate an optional step which depends on the starting 
input file (either CRAM or FASTQ) C. rDNA read simulator pipeline. 
 
 
Benchmarking variant callers using simulated data 
 
None of the publicly available variant callers are optimized for calling rDNA variants. 
This is due to rDNA having effectively high and individually-variably copy numbers 
(high ploidies).  
 
Using our simulations, we benchmarked three publicly available and widely-used 
variant callers: HaplotypeCaller, Mutect2 and LoFreq. HaplotypeCaller and Mutect2 
are part of the GATK workflow (16) but HaplotypeCaller is optimized for germline 
mutations and allows the analysis of different ploidies, whereas Mutect2 is optimized 
for somatic mutations. LoFreq is also a variant caller optimized for somatic mutations 
(17) and has been the most widely-used in previous studies to analyze rDNA 
variation (7, 10).  
 
We run HaplotypeCaller from GATK (16) with different --sample-ploidy (2, 5, 10, 20, 
30, 40) and hard filtering of quality > 1000 on our simulated data. The 
--sample-ploidy parameter in GATK refers to the number of chromosome copies 
expected in an individual sample, which is usually 2 in diploid loci but in rDNA, the 
true ploidy is highly variable between samples.  
 
In addition, while changing the parameter --sample-ploidy, we also change 
--max-genotype-count, an internal parameter, accordingly. The default internal 
parameter in GATK for --max-alternate-alleles is 6 and for --max-genotype-count, 
1024. The number of --max-genotype-count needs to be updated with changing 
ploidies according to the following formula: 

 
F(num_alleles, ploidy) = (num_alleles + ploidy -1)! / ((num_alleles -1)!*ploidy!) 

 
If --max-genotype-count is not updated when increasing --sample-ploidy, multiallelic 
positions variants will not be evaluated. Hence, we used as --max-genotype-count 
the result of the formula to keep constant num_alleles=6. For example, for 
--sample-ploidy 20, we use --max-genotype-count 53130. 
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Next, we run joint genotyping with GATK, which leverages population-wide 
information when multiple samples are available. After executing HaplotypeCaller, 
instead of applying a hard filter, we use GenomicsDBImport and GenotypeGVCFs 
with the recommended hard filters according to the GATK best practices: for SNPs 
we use "QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < 
-12.5, ReadPosRankSum < -8.0", and for INDELs, "QD < 2.0, QUAL < 30.0, FS > 
200.0, ReadPosRankSum < -20.0". 
 
Finally, we used two methods optimized for somatic mutations. We run Mutect2, a 
variant caller within GATK (16), with parameter “--mitochondria-mode”, which is 
optimized for variant calling in mitochondrial DNA, a scenario with ploidies similar to 
rDNA. We also used LoFreq (17) with default parameters. 
 
To compare the different variant callers we computed the following statistics: 

 
Precision: True Positives / (True Positives + False Positives) 
Recall: True Positives / (True Positives + False Negatives) 

F1 score: 2 * Precision * Recall / (Precision + Recall). 
 
We included the novel preprocessing steps and the best-performing variant caller, 
HaplotypeCaller with ploidy 20, inside a pipeline named rDNAcaller, which is publicly 
available on github: https://github.com/Mele-Lab/rDNAcaller.  
 
Since variant calling with short-read sequencing has been associated with low 
precision in highly-repetitive regions (18), we analyzed the performance of 
HaplotypeCaller in rDNA repetitive regions and compared it to the rest. To identify 
repetitive regions, we used the union of Repeatmasker (19) with parameters 
“-species human -norna”, Tandem Repeat Finder (20) with parameters “2 7 7 80 10 
50 500 -f -d -m”, and the homopolymers longer than 3 bases identified with 
homopolymerFinder from sarlacc (21). 
 
 
rDNA variant extraction in the human CHM13-T2T assembly 
 
The CHM13-T2T genome assembly contains all rDNA copies present in the CHM13 
cell line. To evaluate the performance of rDNAcaller in experimental data from the 
CHM13 cell line, we needed to extract the rDNA variants from the genome assembly. 
We obtained the genomic coordinates of the rDNA copies from the genome 
annotation file and extracted them using the function getfasta from bedtools (22). To 
obtain the number of unique rDNA copies we performed a multiple sequence 
alignment using clustalo (23) with parameters “--full --percent-id --iterations 50”. We 
kept the copies without other identical copies based on the distance measures 
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obtained in the multiple sequence alignment. To get the list of variant positions 
indexed according to chromosome R, we performed a multiple sequence alignment 
for the 24 unique rDNA copies and the 13 kb of the 45S in chromosome R with the 
same parameters as before. We extracted the rDNA variants (.vcf file format) from 
the multiple sequence alignment (.aln file format) using msa2vcf from 
https://github.com/pinbo/msa2snp. Since the indels are reported differently by 
msa2vcf and GATK, we only kept SNPs when comparing the performance of 
different preprocessing steps on samples from the CHM13 cell line. 
 
 
rDNA variant calling in the 1000G  
 
We used rDNAcaller in the 1000G project dataset (24). We downloaded the CRAM 
files from the 2,504 individuals included in Phase 3 from their portal. We excluded 10 
individuals with < 300 rDNA reads mapped to chrR. 
 
When alignment files (cram/bam/sam) with reads mapped to hg19 (GRCh37), hg38 
(GRCh38) or hs1 (T2T-CHM13) are available, we can directly extract into a FASTQ 
file the reads mapped to regions of the reference genomes annotated as rDNA-like 
regions. These are all the regions of the reference genome where an rDNA read 
could map: 361 kb, 881 kb, and 12 mb for hg19, hg38, and hs1, respectively (13). 
This is much faster than converting the full cram/bam/sam files into FASTQ.  
 
 
rDNA copy number estimation 
 
We assessed rDNA copy number (CN) in the individuals from the 1000G project 
(25). Briefly, we sorted, indexed and filtered the alignment files (BAM) previously 
generated by applying our rDNAcaller, to retain only reads aligned to the 18S 
reference using samtools version 1.10 (26). Note that CN is usually computed from 
reads aligned to 18S instead of 28S, as this second contains higher GC content. We 
then divided the number of reads mapped to the 18S by the sum of reads assigned 
to numbered chromosomes as reported by samtools idxstats to obtain the 18S Ratio. 
Finally, we calculated CN estimates by the following formula:  
 

rDNA CN = (18S Ratios * numbered chromosome sizes in Hg38 (2,875,001,522 
bases)) /  

size of the 18S subunit (1,869 bases) 
 
 
Nucleotide diversity score 
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Nucleotide diversity corresponds to the average number of nucleotide differences 
per position between every sequence pair in a population. This would correspond to 
the probability of detecting two different nucleotides at the same position from two 
different sequences. We computed nucleotide diversity scores (π) accounting for 
polyploidy and multiallelic positions. We computed the mean allele frequencies per 
variant position across donors and computed all pairwise combinations of allele 
products, which is equivalent to: 
 

 π =  𝐴𝐹
1
² +  ...  +  𝐴𝐹

𝑛
²

where n is the number of alleles per position. Finally, we computed the average π 
per region. 
 
Association between rDNA variants and population 
 
To test the association between number of rDNA variant alleles and population, we 
fitted a generalized linear model with a quasi-Poisson error distribution to account for 
overdispersion in the response variable, using the glm function from R. We corrected 
for rDNA CN as a continuous variable and included population as a categorical 
variable: 
 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝐷𝑁𝐴 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠  ~  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑟𝐷𝑁𝐴 𝐶𝑁  

 
To then test the association between nucleotide diversity score and population, we 
fitted a linear model using the same covariates as before with the function lm from R: 
 

 π  ~  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑟𝐷𝑁𝐴 𝐶𝑁  

 
To visualize the results, we computed the residuals with the function residuals from R 
using the same two models without the variable Population. 
 
Results 
 
HaplotypeCaller with high ploidy is the best-performing rDNA variant caller 
 
To build a pipeline for rDNA variant calling, we benchmarked different variant caller 
workflows using data generated with our rDNA simulator (Fig. 1C). None of the 
standard variant caller workflows are optimized to call variants in genes with very 
high copy numbers, let alone to do so in samples with variable copy numbers as is 
the case for rDNA genes. We benchmarked three variant callers: GATK’s 
HaplotypeCaller, a method optimized for germline variants that has a ploidy 
parameter; Mutect2, a method optimized for mitochondrial variants; and LoFreq, 
which is optimized for somatic mutations. We also evaluated if running 
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Joint-Genotyping after running HaplotypeCaller improves performance, as GATK 
recommends to leverage population-wide information from multiple samples (16).  
 
We benchmarked all three variant callers against 50 different sets of simulations. 
HaplotypeCaller has the highest precision (Fig. 2A) whereas LoFreq and Mutect2 
have the highest recall (Fig. 2B). Based on F1 score, HaplotypeCaller is the 
best-performing variant caller (Fig. 2C). Although GATK recommends 
Joint-Genotyping when having multiple samples, in this context, it achieves the 
lowest performance of all rDNA variant calling approaches. Increasing the ploidy 
parameter in HaplotypeCaller reaches a plateau at ploidy 20 (mean F1 score = 0.96). 
Thus, increasing the ploidy parameter further only increases computing power with 
no accuracy benefit. Therefore, we considered GATK’s HaplotypeCaller with ploidy 
20 as the best-performing rDNA variant caller. Notably, this approach outperforms 
previously used methods. Joint-Genotyping with ploidy 2, the method used by (6) 
has a mean F1 score of 0.74, and Lofreq, the method used by (7), (10) and (9) has a 
mean F1 score of 0.83 (Fig. 2C). 
 

 
Figure 2. Benchmark of variant callers with rDNA simulated data. A. Precision 
B. Recall and C. F1 score of the different variant caller and parameters 
benchmarked using 50 simulations. D. Precision E. Recall and F. F1 score evaluated 
only using variants with allele frequency > 0.05. HC = GATK’s HaplotypeCaller with 
changing ploidy parameter. JG = GATK’s joint genotyping. JG - 2 was the method 
used by (6) and Lofreq by (7), (10) and (9). 
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A common practice in previous studies without benchmarking was to filter variants 
based on allele frequency (9, 10). When filtering out variants with allele frequency 
lower than 0.05, the precision is very high with all methods (Fig. 2D) to the detriment 
of the recall (Fig. 2E). Nevertheless, HaplotypeCaller remains the top-performing 
variant caller (Fig. 2F). 
 
Variant calling using short-read sequencing has been associated with low precision 
in highly-repetitive regions (18). Since rDNA contains highly-repetitive regions, we 
evaluated the performance of HaplotypeCaller in the subset of positions that fall in 
repetitive regions (Fig. 3A). The F1 score in repetitive regions (mean F1 score = 
0.93, Fig. 3B) is slightly lower than when considering all positions (mean F1 score = 
0.96, Fig. 3C). However, this decrease is mostly driven by a decrease in recall, and 
not a decrease in precision (Fig. 3B-C). This suggests that while the number of false 
negatives might be slightly higher in the rDNA repetitive regions, the number of false 
positives is not higher. Thus, we can confidently trust the variants called by 
HaplotypeCaller across all the rDNA positions. 
 
 

 
Figure 3. Performance of HaplotypeCaller in repetitive regions. A. Proportion of 
rDNA nucleotide positions that are located in repetitive versus non-repetitive regions. 
B. Precision, recall and F1 score of HaplotypeCaller with ploidy 20 in repetitive 
regions, or C, non-repetitive regions. 
 
 
rDNAcaller is the fastest pipeline 
 
We named our pipeline rDNAcaller, which includes selecting candidate rDNA reads, 
mapping to a customized reference genome, and performing rDNA variant calling 
with HaplotypeCaller ploidy 20 (Fig. 1B). We tested the performance of rDNAcaller 
on experimental data. Specifically, we used short-read WGS from the CHM13 human 
cell line for which the rDNA copies are present in the T2T genome assembly (5). 
This cell line contains 219 rDNA copies, from which there are 24 unique rDNA 
sequences. These unique sequences are extremely similar to one another (Fig. 4).  
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Figure 4. Human T2T unique rDNA copies. A. Percentage of similarity between 
the 24 unique rDNA copies in the CHM13 cell line. 
 
We evaluated the speed and accuracy of our preprocessing steps relative to 
previously used approaches in the literature. We specifically evaluated two tasks: (1) 
the inclusion of the MUMmer step, which retrieves candidate rDNA reads with a 30 
nucleotide exact match to chrR before performing variant calling; and (2) the effect of 
mapping either to chrR alone or the whole genome with chrR. We tested all four 
different combinations of these tasks and found that incorporating MUMmer 
improves both runtime efficiency and variant calling performance (F1 score) 
regardless of whether the analysis begins from raw FASTQ files (Fig. 5A) or BAM 
files (Fig. 5B). In addition, we observed that when the MUMmer step is included, the 
choice between mapping to just chrR or to the whole reference genome has minimal 
impact on performance. However, omitting MUMmer, led to an increase of 15 false 
positives, all mapping to the 18S rRNA gene. These false positives likely originate 
from pseudogene-derived reads, as 18S pseudogenes are known to be present 
outside the acrocentric chromosomes (3, 13). This highlights the critical role of the 
MUMmer-based read retrieval step, which not only accelerates the pipeline runtime 
but also enhances performance by excluding reads originating from rDNA 
pseudogenes.  
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Figure 5. Performance of rDNAcaller on experimental data. Average time and 
accuracy of rDNAcaller on 4 replicates from the CHM13 cell line when the input data 
is either (A) a FASTQ file or (B) a bam file already mapped to hg38. Error bars 
representing the standard error are included. The x-axis refers to the different 
preprocessing steps of rDNAcaller. “Read selection” is the step of retrieving 
candidate rDNA reads, which in (A) only represents using MUMmer or not, but in (B) 
it represents retrieving the candidate rDNA reads from the bam file plus the choice of 
including MUMmer or not. “Mapping” refers to the mapping with bwa to either a 
reference with only chromosome R (chrR), or to the optimized genome for rDNA 
containing only one rDNA copy (genome). “Variant calling” refers to the calling with 
HaplotypeCaller from GATK with ploidy 20. Precision, recall and F1 scores are 
computed considering only SNPs. 
 
 
rDNAcaller finds thousands of novel rDNA variants across human populations 
 
A previous work found that rDNA variants were positioned nonrandomly in samples 
from the 1000 Genomes Project (24), with 28S rRNA harbouring more variants than 
the 18S and the 5.8S rRNAs (6). Since rDNAcaller has higher sensitivity than their 
method (JG - 2, Fig. 2), we expect to find more variants in the same data. Our 
analysis identified a catalog of 6,019 variant positions, comprising 8,876 variant 
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alleles, ~25% of which are indels (Supplementary Table, Fig. 6A). These variants 
show significant overlap with those previously detected using the same dataset (6) 
(OR=5.72, p-value 2.2e-16, Fig. 6B). However, as expected, we retrieved 5,607 
additional variant positions that were not reported in the previous study, representing 
an increase of one order of magnitude. Nearly half of our detected variant alleles 
(~48%) are individual-specific, whereas 2,124 are shared across five or more 
individuals.  
 
We then explored the distribution of the rDNA variants across the different regions of 
the locus. The 5’ external transcribed spacer (5’ETS) has the highest proportion of 
variant positions, while the 18S and the 28S rRNAs have the lowest (Fig. 6A). We 
also computed the average nucleotide diversity score, which accounts for both the 
proportion of variant positions and their allele frequency. As expected, we found that 
the three rRNA-encoding regions (28S, 18S and 5.8S) had the lowest nucleotide 
diversity values, consistent with these regions being more evolutionarily conserved 
than the spacer regions (Fig. 6C).  
 
Expansion segments are structurally flexible regions of rRNAs that extend beyond 
the ribosomal core in three-dimensional space. These regions are less conserved 
across species, and despite interacting with ribosome-associated proteins, their 
functional roles still remain unclear (27). We found that the nucleotide diversity 
scores are significantly higher in expansion segments, consistent with previous 
studies (8), suggesting that these regions experience weaker evolutionary 
constraints compared to the core ribosomal regions (Fig. 6D). 
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Figure 6. rDNA variants in the 1000 Genomes Project. A. Number of rDNA 
variants stratified by region and by whether they are present in more than 5 donors 
or not. B. Overlap between the variants found with rDNAcaller and (6) C. Mean 
nucleotide diversity stratified by region. D. Mean nucleotide diversity stratified by 
region and location in expansion segments (ES) 
 
 
 
African individuals have more rDNA variants  
 
We then wanted to characterize rDNA genetic diversity between human populations. 
African individuals showed the highest number of rDNA variants among all 
populations (Fig. 7A). Importantly, African individuals also show a higher rDNA copy 
number (CN) (Fig. 7B), a variable with a positive correlation to the number of total 
rDNA variants across individuals (Fig. 7C).  
 
We wondered whether the higher number of variants in Africans is only due to higher 
CN, or if this variability is still higher when accounting for CN. To check this, we run a 
linear model adjusting for CN (See Methods), and we see that CN is significantly 
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associated with the number of rDNA variants (p-value=6.35e-46), and African 
individuals still show a significantly higher number of rDNA variants (Fig. 7D). To 
further confirm this, we explored the association between population and nucleotide 
diversity score, a variable less associated with CN (Fig. 7E). In this case, there is 
also a significant difference between populations, with African individuals showing 
the highest nucleotide diversity scores. These results show that the higher number of 
variants in African individuals is not only driven by the higher CN, but African 
individuals also show greater underlying sequence diversity at rDNA, consistent with 
their higher effective population sizes and recent evolutionary history (24, 28). 
 
 
 

 
 
Figure 7. African individuals have a higher number of rDNA variants. A. 
Number of rDNA variant alleles stratified by population (Wilcoxon tests). B. rDNA CN 
stratified by population (Wilcoxon tests). C. Correlation between rDNA CN and 
number of rDNA variant alleles, colored by population. The p-value is obtained from 
a Pearson correlation. D. Residuals obtained from the following linear model: 
Number of rDNA variants ~ rDNA CN. The p-values are obtained from the covariate 
Population of the following model: Number of rDNA variants ~ rDNA CN + Population 
(See Methods). E. Correlation between rDNA CN and nucleotide diversity score, 
colored by population. The p-value is obtained from a Pearson correlation. F. 
Residuals obtained from the following linear model: Nucleotide diversity score ~ 
rDNA CN. The p-values are obtained from the covariate Population of the following 
model: Nucleotide diversity score ~ rDNA CN + Population (See Methods). AFR = 
ESN, GWD, LWK, MSL, YRI, ACB, ASW; AFR/AMR = ACB, ASW; AMR = CLM, 
MXL, PEL, PUR; EAS = CDX, CHB, CHS, JPT, KHV; EUR = CEU, GBR, FIN, IBS, 
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TSI; and SAS = BEB, GIH, ITU, PJL, STU. All p-values are adjusted for multiple 
testing using the Bonferroni test correction. 
 
 
 
Discussion 
 
We developed rDNAcaller, a fast and highly accurate pipeline for detecting rDNA 
variants in both simulated and experimental datasets. Unlike previous methods, 
rDNAcaller avoids calling pseudogenic variants, and outperforms them in both 
accuracy and computational efficiency. 
 
Applying rDNAcaller on the 1000 Genomes Project dataset, we successfully 
replicated previously-identified rDNA variants while also expanding the variant 
catalog by an order of magnitude. This increase enhances our understanding of 
human genetic variation within rDNA regions, providing a more comprehensive and 
accurate representation of these loci. Additionally, we reveal a correlation between 
higher rDNA CN and increased number of rDNA variants, with African individuals 
showing the highest values for both. Importantly, after controlling for CN, African 
individuals still exhibit more rDNA variants and higher nucleotide diversity scores 
than other populations, consistent with the patterns observed in the rest of the 
genome, where African populations show greater sequence diversity (24, 28). The 
high similarity among rDNA copies has been attributed to concerted evolution (29), 
where multiple copies of a repeat family are homogenized over time to maintain high 
sequence similarity within a species. However, the persistence of rDNA variants 
indicates an incomplete concerted evolution (11). Our findings suggest that rDNA 
variants escaping homogenization reflect the same population-level diversity seen 
across the genome, with African populations showing the greatest variation. 
Importantly, a previous study (7) reporting fewer rDNA variants did not detect this 
trend, highlighting the value of the increased sensitivity of rDNAcaller. 
 
We anticipate rDNAcaller to render useful in many biological contexts. In 
genome-wide association studies (GWAS), rDNA variants have traditionally been 
excluded (2). However, a recent study focused on a very small subset of rDNA 
variants has already shown important associations with body size (9). Our pipeline 
will greatly increase the number of rDNA variants to be tested for associations with 
human traits in large biobanks. Additionally, rDNA copy number is extremely affected 
by cancer (30), potentially giving rise to novel rDNA variants or altering the frequency 
of existing variants. By integrating rDNAcaller into cancer genomics, we might 
uncover new insights into the role of rDNA variation in tumorigenesis. Beyond 
cancer, our pipeline holds promise for studying a plethora of diseases caused by 
ribosomal dysfunction, named ribosomopathies (31). Some of these conditions may 
originate from specific rDNA variants, and rDNAcaller provides a powerful tool for 
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identifying such pathogenic variants. Notably, some of these variants may arise 
somatically, since rDNA might be a hotspot for somatic mosaicism, and rDNAcaller 
could be instrumental in identifying such variation across tissues and disease states. 
Finally, our pipeline could be adapted for use in other species, such as mice, and 
other repetitive genomic elements with architectures similar to rDNA, such as SINEs 
and LINEs, which also show intra- and inter-individual variation.  
 
Overall, rDNAcaller represents a significant advancement in the study of human 
genetic diversity. By enabling more precise analysis of rDNA variants, this pipeline 
has the potential to enhance our understanding of genetic variation in ribosomal 
DNA and its implications for health and disease, ultimately bridging the gap between 
rDNA diversity and phenotypic traits in biomedical research. 
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