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ABSTRACT 

Alternative splicing is widely acknowledged to be a crucial regulator of gene 

expression and is a key contributor to both normal developmental processes and disease 

states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the 

ability to resolve full-length transcript isoforms despite increasingly sophisticated 

computational methods. Long-read sequencing platforms such as Pacific Biosciences 

(PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of 

short reads. Here we introduce TALON, the ENCODE4 pipeline for platform-independent 

analysis of long-read transcriptomes. We apply TALON to the GM12878 cell line and 

show that while both PacBio and ONT technologies perform well at full-transcript 

discovery and quantification, each displayed distinct technical artifacts. We further apply 

TALON to mouse hippocampus and cortex transcriptomes and find that 422 genes found 

in these regions have more reads associated with novel isoforms than with annotated 

ones. We demonstrate that TALON is a capable of tracking both known and novel 

transcript models as well as their expression levels across datasets for both simple 

studies and in larger projects. These properties will enable TALON users to move beyond 

the limitations of short-read data to perform isoform discovery and quantification in a 

uniform manner on existing and future long-read platforms. 
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INTRODUCTION 

Differences in gene expression play a large role role in shaping cell phenotypes 

and interactions, both during development and in later life. While humans have around 

20,000 protein coding genes, they produce at least 100,000 splice isoforms through 

alternative splicing, and potentially many more1. Alternative splicing controls which exons 

are included in the mature mRNA, thus expanding the number of possible transcripts that 

a single gene can encode. Some isoforms have vastly different functions and may be 

highly specific to a particular tissue or temporal stage2–4. For instance, alternative splicing 

of the transcription factor erbAα in rats gives rise to one isoform which acts as a 

transcriptional activator, while a second isoform acts as a repressor5. This is a specific 

instance of an evolutionary strategy whose extent is not yet known, in which differential 

RNA splicing creates one or more “dominant negative” protein isoforms. Differential RNA 

isoforms are also important in disease. The Mapt gene has isoforms that are known to be 

differentially expressed in various human neural lineages, and their relative proportions 

change during progression of Alzheimer’s disease, ultimately leading to the formation of 

the tangles that kill neurons6.  

 

In the best understood cases, alternative splicing is tightly regulated, relying on 

highly conserved sequence and structure motifs and complex networks of RNA binding 

protein interactions to define functional isoforms7. Disruptions to the splicing process 

frequently lead to disease, whether in the form of genetic mutations that directly affect 

splice sites or splicing factors, or more subtle changes that alter the balance between 

different isoforms6,7. As a result, alternative splicing and exon usage in RNA transcripts 
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have long been the subject of great interest in the context of development and disease. 

In early studies, the preferred methods for characterizing and measuring isoforms were 

RT-PCR, Sanger sequencing of expressed sequence tags (ESTs), and isoform-specific 

microarrays8. This changed dramatically with the availability of next-generation short-read 

RNA sequencing, which allows gene expression to be profiled quantitatively in a high-

throughput manner9. This led to the generation of large reference transcriptome 

databases for human and mouse cell types and tissues, begininning with ENCODE and 

rapidly expanding to GTEx and FANTOM10–12. In the cancer community, the Cancer 

Genome Atlas (TCGA) serves as a massive source of RNA-seq data from patient 

samples13.  

 

With the widespread availability of RNA-seq, many efforts have been made to infer 

isoform usage from short-read data14. However, this is intrinsically challenging, as short-

read protocols require cDNA transcripts to be sheared into 50-300 bp pieces prior to 

sequencing. These pieces are far smaller than typical mammalian transcripts, which can 

be multiple kilobases in length15. This means that it is not possible to know the exact 

combination of exons originally present in each transcript molecule. To get around this, 

computational methods were developed to reconstruct the transcript models present in a 

sample and to quantify their abundance. Here, we use the term ‘transcript model’ to 

describe a distinct set of splice junctions paired with variable 5’ and 3’ ends. 

Bioinformatics software packages such as Kallisto use expectation-maximization to 

pseudo-align short reads to a transcriptome reference, generating abundance estimates 

for transcript and gene models16. These algorithms are effective in broadly identifying 
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which transcripts the reads are compatible with, but they cannot tell exactly which ones 

were present. Long-distance contiguity is especially challenging. An additional drawback 

is that these methods depend heavily on the choice of the reference transcript annotation 

and, as such, they cannot identify novel transcript models. Another widely used approach 

to quantifying alternative splicing is to compute short read coverage of specific splice 

junctions or exons, and compare the resulting counts across samples using statistical 

tests17,18. While these methods are useful for detecting alternative exon usage, they do 

not overcome the fundamental limitations of short-read data with respect to assembling 

and assigning exactly which exons made up the source transcript. 

 

Since 2012, third-generation sequencing platforms such as PacBio and Oxford 

Nanopore (ONT) have pioneered the use of long reads in genomics19,20. With read lengths 

of up to 60 kb for PacBio and up to 1 Mb for Oxford Nanopore, these reads can capture 

entire transcripts from end to end. They also offer the advantage of representing single 

molecules rather than amplified clusters, making them ideal for sequencing isoforms. 

Historically, the major drawbacks of long read technologies have been their relatively low 

throughput as well as high indel and mismatch error rates ranging up to 15-20%19. In the 

case of PacBio, these stochastic errors are mitigated by using circular consensus 

sequencing, in which multiple sequencing passes over the same molecule are used for 

error correction21. The exact error rate depands largely on the number of passes that a 

molecule receives. Computational methods have also been developed to correct errors 

in long reads, including hybrid approaches that incorporate short reads, and other 

methods that make use of reference annotations22–25.  
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Due to the low throughput of the original platforms, the conventional long-read 

transcriptome sequencing approach was to first catalog expressed isoforms using long 

reads from size-selected subsamples, and then map short reads to the resulting 

transcriptome references for the purpose of quantification26–28. PacBio popularized this 

method in mammals, plants, and beyond under the name “Iso-seq”. Recently, PacBio 

yields increased substantially, producing up to 8 million reads per SMRT cell on the 

Sequel 2 compared to 150,000 on the older RSII machines. Similar yield increases have 

been reported for Oxford Nanopore. This increased throughput has made direct long-read 

quantification more plausible. Unfortunately, most existing tools for analyzing long-read 

transcriptome data were not explicitly designed for this purpose. PacBio-affiliated 

software packages such as ICE-Quiver/Arrow and Cupcake ToFU generate de novo 

transcript models by clustering long reads and then merging them to generate one 

transcript model per cluster26,29. This is a particularly useful approach in species that lack 

a reference genome, but it comes with disadvantages. ICE-Quiver has been known to 

merge together transcripts from highly similar genes and can smooth over real differences 

of interest such as sequence variants and RNA editing events30. In addition, the algorithm 

is stochastic by nature, and cluster assignments for individual reads can vary substantially 

across different runs. Most existing programs for transcriptome-wide PacBio annotation 

and quantification rely on the ICE-Quiver or Cupcake ToFU outputs. For instance, 

SQANTI uses post-ToFU transcript models and their estimated abundances as the input 

to its annotation, quantification, and quality control pipeline23.  Another set of pipelines 

such as FLAIR have been developed for analyzing Oxford Nanopore cDNA and direct 
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RNA sequencing data31. As in ICE-Quiver, a common feature of these pipelines is the 

alignment of reads to each other before determining which known and novel transcripts 

are present. 

 

Here, we present TALON, the ENCODE4 pipeline for simultaneous transcript 

discovery and quantification of long-read RNA-seq data regardless of platform. This 

pipeline is designed to explicitly track both known and novel transcripts across different 

bio-samples to allow for annotation and use of new isoforms. The full TALON pipeline is 

available on GitHub through the ENCODE4 Data Coordinating Center (DCC) at 

ENCODE-DCC/long-read-rna-pipeline and at mortazavilab/TALON. We first analyze the 

transcriptome of the GM12878 cell line using the PacBio and ONT to quantify the relative 

performance of both platforms. The TALON pipeline allows us to process PacBio and 

ONT data in a uniform fashion and make direct comparisons between the two. We 

evaluate the resulting transcriptomes relative to available CAGE, poly(A), and RNA-PET 

annotations in these cells and find that each long-read technology is affected by different 

artifacts. We then sequence the transcriptomes of adult mouse hippocampus and cortex 

to show the applicability of the TALON pipeline for the analysis of complex tissues. 

Overall, we demonstrate that current long-read platforms are suitable for quantifying and 

characterizing isoform-level expression of genes. 
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RESULTS 

Tracking transcript novelty and quantification using TALON 

To compare long read platforms side by side and to track isoforms consistently 

across multiple datasets, we developed a technology-agnostic long-read pipeline called 

TALON (Figure 1a). This pipeline is designed to annotate full-length reads as known or 

novel transcripts and also to report the abundance for genes and transcripts across 

datasets. Starting from long reads mapped to the reference genome with a long-read 

Figure 1. Overview of TALON. a) Long-read alignments from either technology are corrected 
with TranscriptClean for each biological replicate. Next, potential internal priming events are 
flagged by the talon_label_reads module. Labeled reads are passed into talon, where they are 
assigned a gene and transcript identity. The talon_abundance module computes gene 
expression directly from the talon results, whereas novel transcript models are filtered prior to 
quantification. Novel transcripts must be reproducibly detected n times in k datasets to pass the 
filter (default n = 5 and k = 2), and must not come from internally primed reads. b) Types of 
transcript novelty tracked by TALON. c) TALON can be used to compare different long-read 
sequencing technologies run on the same biological sample such as the human GM12878 cell 
line. d) TALON can also be used to compare genes and transcripts across different samples 
such as mouse hippocampus and cortex.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2020. ; https://doi.org/10.1101/672931doi: bioRxiv preprint 

https://doi.org/10.1101/672931
http://creativecommons.org/licenses/by-nd/4.0/


aligner such as Minimap2, reference-based error correction is performed using 

TranscriptClean to remove microindels, mismatches, and noncanonical splice junctions 

in a variant-aware manner as previously described25. Noncanonical splice junctions are 

permitted in the final output only if they are supported by the splice annotation. Note that 

TALON expects reads to be oriented to the appropriate strand, which is typically achieved 

using platform-specific preprocessing in the case of cDNA reads (Figure S1a-b). After 

TranscriptClean, corrected reads are passed into the talon_label_reads TALON module, 

which records QC information for use by subsequent steps. In particular, long-read 

libraries built using poly(A) selection are prone to internal priming artifacts in A-rich 

regions of transcripts that result in truncated isoforms. Therefore, tracking the fraction of 

As following alignments is informative for TALON’s transcript filtering process. After the 

internal priming labels have been assigned, the reads are passed into the main talon 

module for annotation. In a talon run, each input SAM read is compared to known and 

previously observed novel transcript models on the basis of its splice junctions, start, and 

end points. This allows us to not only assign a novel gene or transcript identity where 

appropriate, but to track new transcript models and characterize how they differ from 

known ones. The result is a collection of all transcripts observed in each input dataset 

that can then be filtered, quantified, and compared using downstream TALON modules.  

 

We adopted the nomenclature introduced by SQANTI to characterize the different 

types of transcript novelty in our datasets23. Query transcripts with splice junctions that 

perfectly match an existing model are deemed ‘known’ (Figure 1b). Flexibility is allowed 

at the 5’ and 3’ ends. In cases where a transcript matches a subsection of a known 
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transcript model and has a novel putative start or endpoint, it is considered an ‘incomplete 

splice match’ (ISM). TALON further subdivides the ISM category into prefix ISMs and 

suffix ISMs. The former refers to ISMs that match along the 5’ end of an existing transcript 

model, and the latter describes ISMs that match to the 3’ end. It is possible for a transcript 

to belong to more than one ISM category if it matches to different parts of several existing 

transcript models. The ISM category is useful as a means of quality control as libraries 

with a higher proportion of ISMs relative to known transcripts tend to be less than 

complete in terms of length and may harbor more artifacts. For instance, RNA 

degradation and incomplete reverse-transcription can lead to suffix ISMs. In Oxford 

Nanopore, pore blockages can produce suffix ISMs by prematurely stopping sequencing 

of the RNA. In the case of prefix ISMs, internal priming is the most likely culprit. However, 

not all ISMs are sequencing artifacts. To differentiate between a truly novel ISM transcript 

and one that is artifactual, it is useful to test against relevant orthogonal data such as 

CAGE, RNA-PET, or poly(A) annotations, which are often available from external 

databases. This can provide independent validation to support or reject a new 5’ or 3’ end 

seen in an ISM transcript. 

 

The next category, novel in catalog (NIC), describes transcripts that have known 

splice donors and acceptors, but reveal new connections between them. This can be 

thought of as a novel arrangement of known exons. Novel not in catalog (NNC) transcripts 

contain at least one novel splice donor or acceptor, meaning that there is at least one 

novel exon boundary present. Genomic transcripts are either partial transcripts that do 

not share any splice junctions with overlapping genes or may come from DNA 
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contamination in the samples, and are therefore discarded by the filter, reproducible or 

not. The antisense category consists of transcripts that overlap an existing gene, but are 

oriented in the opposite direction. If a transcript lacks any overlap with a known gene, 

then it is deemed intergenic. Taken together, the novelty categories allow us to examine 

the types of transcripts that we detect in our long-read datasets, to perform quality control, 

and to stratify or filter by category.  

 

Biological replicates serve as an important means of verifying novel transcript 

discoveries. Although the accuracies of long-read platforms are improving, artifactual 

transcripts are still a problem, and may arise from a variety of technical sources. TALON 

streamlines the filtering process for multiple datasets by tracking transcript annotations 

and abundance in one place, where the information can be easily accessed and 

compared. Our filtering process uses the novelty labels assigned to each observed 

transcript model in order to remove likely artifacts. Observed transcripts that fully match 

counterparts in the GENCODE annotation are accepted immediately, but we require that 

novel transcripts be supported by at least 5 reads each in at least two biological replicate 

samples in order to be included in the downstream analysis. Furthermore, all five reads 

must all pass the internal priming cutoff (fraction As ≤ 0.5). These cutoffs can be adjusted 

by the user to accommodate different oligo-dT lengths or sequencing depths. As 

additional samples are sequenced, it is also possible to cross-reference novel transcripts 

across these datasets.  
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TALON quantification relies on the premise that each long read represents an 

individual transcript molecule sequenced. This allows us to quantify expression by simply 

counting the number of individual reads that were assigned to a particular transcript or 

gene and then converting these values into units of transcripts per million (TPM) to adjust 

for library size. For gene-level expression values, we include all reads assigned to a locus 

in the computation, since even incomplete transcripts (ISMs) that did not meet the 

threshold to become a new transcript model are informative for the overall gene 

expression level. On the transcript level, however, we apply the TALON filters in order to 

avoid quantifying transcript models with insufficient evidence.  

To demonstrate the utility of TALON, we applied it in two different settings (Table 

S1). First, we compared long-read GM12878 data sequenced on different platforms: 

PacBio Sequel II and direct-RNA ONT (Figure 1c; Table S3). Then, we used TALON to 

analyze gene and isoform-level expression across the complex tissues of cortex and 

hippocampus in mouse (Figure 1d; Table S3). In each case, we sequenced at least 6 

million raw reads per replicate. Spike-in RNA variants (SIRVs) in our samples provided 

us with an opportunity to evaluate TALON filtering on artificial sequences with fully known 

splice patterns (Table S4-5). The expected outcome in an error-free setting would be to 

detect exactly 69 known isoforms from a total of 7 SIRV genes, and to detect zero novelty. 

After applying the TALON transcript filter (including the internal priming cutoff) to SIRVs 

sequenced with the two PacBio GM12878 replicates, we detected 67 known SIRV 

transcripts and only 13 novel models (Figure S2a). 96% of the filtered reads matched a 

known isoform (Figure S2b), In contrast, the unfiltered SIRV data contained a much 

higher fraction of artifactual novel transcripts (Figure S2c,d). The ISM category was the 
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most common form of novelty, accounting for between 5 and 6% of the unfiltered reads 

by replicate. About 60% of the reads assigned to prefix ISMs displayed evidence of 

internal priming, suggesting that this is a substantial artifact of cDNA sequencing in 

PacBio (Figure S2e). The TALON filter was highly effective in removing these transcripts- 

after filtering, only 9 ISM models remained. Overall, these results indicate that the TALON 

filter is effective at removing artifactual transcript models. 

Performance of TALON on human ENCODE Tier 1 PacBio data 

We then turned our attention to applying TALON to GM12878 reads mapped onto the 

human genome (Table S6-S8). TALON detected 15,727 known GENCODE genes and 

26,841 GENCODE transcripts in GM12878 across the two replicates. The number of 

known genes is smaller than the number of known transcripts because known genes can 

be detected through novel transcripts as well as known ones. The analysis also called 

359 unknown gene models, the majority of which consisted of monoexonic transcripts 

mapped as antisense within a known gene locus. The TALON N50 read lengths for Rep 

1 and Rep 2 were 1,877 and 1,791 nucleotides, respectively, which is in line with the 

expected length distribution of most mammalian mRNA transcripts (Fig S3). 

We next computed the expression level for each known GENCODE gene across 

the PacBio data. For this quantification, we included all long reads assigned to a locus in 

these counts because even incomplete transcripts are informative for the overall gene 

expression level. The resulting gene expression levels were highly correlated across 

biological PacBio replicates of each cell line (Pearson r = 0.97, Spearman rho = 0.92) 

(Figure 2a). This shows that our PacBio primary data coupled with the TALON pipeline 

produces reproducible quantifications of gene expression. 
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Figure 2. Performance of TALON on PacBio transcripts from GM12878 cell line. a) 
Expression level of known genes (GENCODE v29) in each biological replicate (Pearson r = 0.97, 
Spearman rho = 0.92). b) Proportion of genes expressed in Illumina RNA-seq data of GM12878 
that are also detected in PacBio, binned by Illumina expression level (TPM). c) Comparison of 
gene expression levels for known genes in the PacBio and Illumina RNA-seq platforms. d) 
Number of distinct transcript isoforms observed in each novelty category. e) Expression level of 
known transcript models in each biological replicate (Pearson r = 0.97, Spearman rho = 0.73). f) 
Expression of transcript models in each biological replicate, labeled by their novelty assignments 
(Pearson r = 0.97, Spearman rho = 0.83) . g) Comparison of known transcript expression levels 
in the PacBio and Illumina RNA-seq platforms. h) Total number of PacBio reads assigned to 
each novelty category after transcript filtering (Rep 1). i) Percentage of known and novel PacBio 
GM12878 splice junctions supported by Illumina. Junctions labeled NIC indicate novel 
combinations of known splice sites, while NNC junctions included a new donor and/or acceptor. 
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We also compared our PacBio results to short-read RNA-seq data from the same 

cell line. First, we examined how often PacBio was able to detect known genes as a 

function of their short-read expression level (Figure 2b). As expected, genes at the lower 

range of expression (< 2 TPM from short reads) were less likely to be detected by PacBio, 

but upwards of 70% of genes expressed above 2 TPM were reproducibly detected. 

Overall, the expression levels of the 14,947 genes detectable in both PacBio and Illumina 

correlated well across platforms (Spearman rho 0.78). We conducted a differential 

expression analysis to further examine how much gene expression levels vary between 

the platforms. The log fold change between PacBio and Illumina was computed using the 

exact test method in EdgeR, and Bonferroni correction for multiple testing was performed 

on the resulting p-values (Table S9). This analysis revealed that there was no significant 

difference in expression levels for most genes (Figure 2c). However, a subset of genes 

showed significant fold change differences, including 773 that were higher in PacBio and 

1,139 that were higher in Illumina. Genes expressed significantly higher in Illumina tended 

to have longer median transcript lengths on average than those that were not differentially 

expressed or that were expressed more highly in PacBio (Figure S4a). This suggests 

that these PacBio data under-detect the longest transcripts (greater than 5 kb) when no 

size selection is applied. Genes with higher expression in PacBio had significantly higher 

median GC content as a group (adjusted p = 4.950e-08) than those that were higher in 

Illumina (Figure S4b). It is possible that this is related to the GC bias known to affect 

Illumina next-generation sequencing. Overall, non-size selected PacBio libraries detect 

most of the genes expressed at 1 or more TPM in Illumina.  
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Having established that TALON can quantify gene-level expression on the basis 

of long reads, we moved on to transcript-level quantification. As expected, most of the 

transcript models identified in our analysis of the extensively-studied GM12878 cell line 

were known matches to the GENCODE annotation (Figure 2d). The expression levels 

of detected known transcripts were highly correlated across PacBio biological replicates 

(Pearson r = 0.97, Spearman rho = 0.73) (Figure 2e). Novel transcript models displayed 

even stronger expression correlations, likely related to the stringent abundance and 

filtering requirements that were applied to them (Pearson r = 0.97, Spearman rho = 

0.83) (Figure 2f). PacBio transcript expression levels were not significantly different for 

87% of GENCODE transcripts when compared to short-read expression levels (Figure 

2g; Table S10). The known, NIC, and NNC isoform categories account for about 94% 

of the filtered PacBio reads, with known transcripts making up 91.1% of the reads 

(Figure 2h). NIC and NNC transcripts contained a larger number of exons on average 

than the other novelty categories, and also tended to come from longer reads (Figure 

S5a-b). To evaluate the canonical junctions found in the PacBio reads, we compared 

them to junctions called from the short-read Illumina GM12878 RNA-seq data using 

STAR32.  83% of novel PacBio splice junctions featuring known splice donors/acceptors 

had short-read support (Figure 2i).  The majority of PacBio junctions with a novel splice 

donor and/or acceptor were supported as well.  Overall, these results indicate that we 

can reliably annotate and quantify transcript models using our long-read pipeline.  

 

GM12878 is an Epstein-Barr Virus (EBV) transformed lymphoblastoid cell line 

(LCL). We were therefore able to analyze the gene and transcript expression of EBV 
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within the GM12878 PacBio transcriptome. We found that EBV transcripts are detectable 

using long-read sequencing, and that these transcripts can be quantified, annotated, and 

assessed for their novelty using TALON (Table S11-13). Overall, 25 known and 4 post-

filter novel EBV transcript isoforms were detected and 28 known EBV genes were 

detected (Figure S6a-b). Many detected transcripts belong to the EBNA gene family 

(Figure S6c), which code for proteins that are essential to the virus’ ability to transform 

infected cells into LCLs 33, and are typically among the most highly expressed genes from 

the EBV chromosome in LCLs.34 Consistent with the novel transcript models detected by 

TALON, the EBNA transcripts have previously been identified as heavily alternatively 

spliced35.  

 

Performance of TALON on Oxford Nanopore data and comparison with PacBio 

 Oxford Nanopore is an alternative long-read sequencing platform that offers the 

option of direct RNA sequencing 36. While the protocol involves one reverse-transcription 

step, this is primarily for the purpose of removing secondary RNA structure and ultimately 

only the RNA strand is sequenced. In order to demonstrate the applicability of TALON to 

the Nanopore platform, we directly sequenced RNA from two biological replicates of 

GM12878 to a depth of at least 2 million basecalled reads per replicate. After alignment 

with Minimap237, each replicate was processed with the TALON pipeline as described for 
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PacBio (Table S14-16). The TALON N50 read lengths for the datasets were 1,269 

nucleotides for Rep 1 and 989 for Rep 2 (Fig S7a-b). Although the starting number of 

reads was lower than in our PacBio transcriptomes, we detected ~13,500 known 

GENCODE genes and ~18,000 known isoforms in GM12878. Gene and transcript 

expression levels across the two GM12878 ONT replicates correlated with each other 

(gene Pearson r = 0.99,  gene Spearman rho = 0.92; known transcript Pearson r = 0.97, 

known transcript Spearman rho = 0.64) (Figure 3a-b). When we labeled the transcripts 

Figure 3. Comparison of Oxford Nanopore direct RNA-seq transcriptome with Pacbio 
transcriptome in GM12878. a-b) 2 GM12878 replicates were sequenced using the MinIon 
platform and analyzed using TALON pipeline to measure a) gene expression (Pearson r = 0.99, 
Spearman rho = 0.92) and b) transcript expression (Pearson r = 0.97, Spearman rho = 0.64). c) 
Total read count per novelty category. There is a substantially larger fraction of ISM reads than 
full-length known compared to PacBio (Fig 2h). d) Number of distinct isoforms by novelty category. 
e-f) Correlations between ONT direct RNA-seq and PacBio with respect to e) gene expression 
(Pearson r = 0.58, Spearman rho = 0.63) and f) transcript expression (Pearson r = 0.5, Spearman 
rho = 0.18). 
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by their novelty type, it became apparent that differences in isoform-level expression 

between ONT replicates are largely driven by overrepresentation of novel ISM transcript 

models (Figure 3c-d). This leads us to believe that ONT is more sensitive to degradation 

events or is prone to stopping mid-transcript during sequencing, which may explain the 

high ISM numbers in our data.   

 

Next, we compared gene and transcript expression levels across the PacBio and 

ONT platforms in GM12878 (Figure 3e; Table S17-19). These were well-correlated at 

the gene level, but there were interesting differences at the transcript level. For instance, 

ISMs were overrepresented in ONT relative to PacBio, suggesting that the former had 

more difficulty sequencing full-length transcripts (Fig S7c). On the other hand, of 414 total 

antisense transcripts called across the platforms, 276 were unique to PacBio, whereas 

only 26 were detected in ONT alone (Figure 3f). This likely means that the majority of 

antisense transcripts were in fact artifacts of the reverse transcription steps required for 

PacBio, demonstrating a drawback of conversion to cDNA before sequencing, at least by 

the standard methods used for PacBio. Interestingly, there is a set of 88 genes with TPM 

> 10 in both technologies that are detected as more than 10-fold more highly expressed 

in Oxford Nanopore (Table S20-21), which could represent further under-representation 

of these transcripts due to reverse transcription biases. Among the genes enriched in 

Oxford Nanopore we found a subset related to mitochondrial functions (MT-RNR1, 

MTCO1, MT-CO2, MT-ATP6, MT-CO3 and MT-CYB), that have been previously 

characterized as a benchmark for direct RNA-seq performance as pointed out by other 

groups31. Although some mitochondrial genes are subject to a deadenylation process, 
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mature mt-mRNA transcripts contain a non-templated sequence of poly(A)s38. This fact, 

along with the minimal processing steps before sequencing, might explain the higher 

detection levels of these genes on the Oxford Nanopore platform compared to PacBio. 

 

Comparison of TALON and FLAIR on GM12878 Pacbio and ONT data 

FLAIR is another recent pipeline designed to identify and quantify transcripts in 

long-read PacBio or ONT data39. To compare FLAIR and TALON, we ran FLAIR on the 

full-length, non-chimeric PacBio reads from GM12878 replicates 1 and 2 as described in 

the Supplementary Methods. We then compared the FLAIR quantification results to those 

generated by TALON in Figure 2. Similarly to TALON, FLAIR reported strong gene and 

transcript-level expression correlations across biological replicates (FLAIR Pearson r = 

0.96, Spearman rho = 0.94 for known genes and Pearson r = 0.96 Spearman rho = 0.88 

for known transcripts in GM12878). However, FLAIR was less sensitive than TALON with 

respect to detecting known genes and transcripts (Table S22-23). For instance, in 

GM12878, TALON detected 2,525 more GENCODE genes than FLAIR that were also 

expressed in the corresponding short-read data (Figure S8a). Recognizing that FLAIR 

was initially developed for ONT data, we ran the same comparison on our direct-RNA 

ONT GM12878 datasets (Fig. S8b). As in the PacBio analysis, FLAIR detected fewer 

known genes and transcripts in the ONT data than TALON (Table S22-23). This 

discrepancy was particularly pronounced at lower expression levels, but applied to genes 

with > 50 TPM in Illumina as well (Fig. S8b). Taken together, these results demonstrate 

that TALON is currently more sensitive to known genes and transcripts than FLAIR in the 

same datasets. 
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Assessing completeness of TALON transcript models using CAGE, poly(A) motifs, and 

RNA-PET 

The exonuclease treatment of our samples at the RNA stage and the full-length 

classification step in silico are intended to ensure that the transcripts at the end of our 

pipeline have intact 5’ and 3’ ends. To verify completeness, we performed an integrative 

analysis comparing our TALON transcript models with data from the CAGE and RNA-

PET assays, as well as computationally identified poly(A) motifs. For known transcript 

models, the annotated GENCODE 5’ and 3’ sites were used. 
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Figure 4. External validation of transcript model ends by novelty category. a) Percentage of 
TALON transcript models with CAGE support for their 5’ end by novelty category (GM12878 
PacBio). b Percentage of TALON transcript models with a poly(A) motif identified at their 3’ end 
(GM12878 PacBio). c) Percentage of TALON transcript models with RNA-PET support for their 5’-
3’ end pair (GM12878 PacBio). d) Percentage of TALON transcript models with CAGE support for 
their 5’ end by novelty category (GM12878 ONT). e) Percentage of TALON transcript models with 
a poly(A) motif identified at their 3’ end (GM12878 ONT). f) Percentage of TALON transcript 
models with RNA-PET support for their 5’-3’ end pair (GM12878 ONT). 
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CAGE is a genome-wide method of annotating transcription start sites that works 

by trapping the 5’ end cap of a mature mRNA transcript using an antibody and then 

sequencing its 5’ end. To validate the 5’ ends of our long-read transcript models, we 

compared them to CAGE-derived TSSs from the FANTOM5 project. 76% of known 

GENCODE transcripts in our GM12878 PacBio transcriptome had CAGE support (Figure 

4a). Transcripts in the prefix ISM category were overwhelmingly supported (97%), 

whereas suffix ISMs were not (34%). 94% of NIC and 87% of NNC transcripts were 

supported by CAGE, indicating that their 5’ ends were at least as reliable as those of the 

known transcripts. However, the antisense PacBio transcripts had scant support, lending 

credence to the idea that they are largely reverse-transcription artifacts. We observed 

similar CAGE trends in our ONT transcriptome (Figure 4b), although notably, most 

transcript categories tended to have lower rates of support than in the corresponding 

PacBio transcriptome.  

 

To examine transcript completeness at the 3’ end, we conducted a computational 

poly(A) motif analysis of our long-read transcript models. This entailed scanning the last 

35 bases of each transcript sequence to look for the presence of a known poly(A) motif. 

In PacBio, 64% of known transcripts contained such a motif (Figure 4c). Rates of support 

were also high in the suffix ISM, other ISM, NIC, and NNC categories (86%, 80%, 84%, 

and 86% respectively). As expected, only 43% of the prefix ISMs contained a poly(A) 

motif, indicating that many of these transcripts may be artifactual. Overall, similar trends 

were observed in the ONT transcripts (Figure 4d). 
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Finally, we sought to validate the 5’-3’ pairings in our transcript models using 

publicly available RNA-PET data from the ENCODE consortium for both PacBio and ONT 

transcriptomes (Figure 4e-f). This assay marks the start and endpoints of individual 

cDNA transcripts by circularizing and sequencing them with paired-end tags. This data 

type was lower-throughput than the more recently generated CAGE data, which helps 

explain the lower rates of RNA-PET support for known transcripts. We nevertheless 

observed strong RNA-PET support for NIC and NNC transcripts in both PacBio and 

Oxford Nanopore. Of the three ISM categories, prefix ISMs were the most likely to have 

RNA-PET support for their 5’-3’ end pairing. Antisense transcripts had extremely high 

rates of RNA-PET support. The RNA-PET protocol uses reverse transcription, and 

therefore it is possible that this assay is prone to the same types of antisense artifacts as 

PacBio. 

 

Taken together, the results of our CAGE, poly(A), and RNA-PET analyses 

indicated that most NIC and NNC transcript models derived from long reads have intact 

5’ and 3’ ends, which argues that they represent full-length RNA’s. However, inferred 

transcripts in the ISM novelty category require more scrutiny. As expected based on the 

category definition, prefix ISMs had reliable 5’ sites, but their 3’ ends were potentially 

incomplete in many cases. The reverse was true for suffix ISMs. In both cases, this 

suggests that many are technical artifacts. In general, the PacBio platform did a better 

job of capturing complete transcripts in our hands than did direct-RNA ONT, and offered 

the additional benefit of higher throughput.  
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Comparison of PacBio transcriptomes of mouse cortex and hippocampus 

After testing and characterizing TALON on PacBio data in a homogeneous cell 

line, we applied it to begin to discover and quantify  isoforms in the complex brain regions 

of the mouse cortex and hippocampus. The cortex and hippocampus are critical regions 

of the brain for learning because of their functions of neural integration and memory, 

respectively41. Therefore, these regions have been characterized extensively under 

different conditions and models in order to understand their gene expression profiles42. 

These brain regions are much more complex in cell type composition than isolated cell 

lines, and the two regions have both similar and disctint cell types. Regulation of cell type 

diversity is key during their development, aging, and in disease, with both known and 

likely undiscovered differences in gene and isoform-level expression42. In addition, the 

brain at large is known to have a high alternative splicing ratio when compared to other 

tissues 40.   

 

We sequenced two PacBio Sequel II replicates each of cortex and hippocampus 

to a minimum depth of 6 million raw reads per replicate and ran TALON on them (Table 

S24-26). Gene expression was highly correlated across biological replicates (cortex 

Pearson r = 0.96 , Spearman rho = 0.95 and hippocampus Pearson r = 0.89 Spearman 

rho = 0.83) as was transcript-level expression (cortex Spearman rho = 0.84 and 

hippocampus Spearman rho = 0.73) (Fig. S9a-d). On average, we detected 17,000 

known genes and 26,000 known transcripts for each tissue. The diversity of the isoform 

novelty categories was similar between cortex and hippocampus (Figure 5a-b). We 
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identified 694 differentially expressed transcripts isoforms from a total of 612 genes (log 

fold-change > 1 and adjusted pvalue < 0.01), including 607 known and 87 novel transcript 

models (Figure 5c; Table S27). This included differences between known transcripts for 

genes such as Pnisr, which is a splicing factor involved in aging43.  Other examples 

involving novel isoforms include the maternally expressed 3 (Meg3) long-coding RNA 

gene for which we detected two NIC transcript models that were enriched in cortex. Meg3 

is thought to be involved in controlling vascularization in the brain by inhibiting 

angiogenesis44 and is highly expressed. In addition, an NNC transcript of Amigo2 was 

selectively enriched in hippocampus. Amigo2 is known to be upregulated in the CA2 and 

CA3a regions45 and is also commonly used as a marker of astrocyte activation46.  

 

We extended our transcript analysis by asking whether there are specific sets of 

genes with more novel transcript expression than known transcript expression. 

Specifically, we focused on genes that had more reads assigned to NIC and NNC novel 

transcript isoforms than known transcript isoforms in either brain region and found a 

shared set of 352 genes with an additional 29 and 41 that were specific to cortex and 

hippocampus respectively (Figure 5d; Table S28). This includes an NIC isoform of Pnisr 

(ENCODEMT000904037) that is enriched in the cortex (Figure 5e). These analyses show 

that full-length transcriptome sequencing can detect isoform differences even in 

intensively studied tissues and cell types. These differences would be difficult to recover 

from short reads alone, especially for the NIC isoforms.  
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Figure 5. PacBio transcriptomes of 8-month male adult mouse cortex and hippocampus. 
Novelty assignments of distinct transcript models detected in one representative replicate each 
of a) cortex and b) hippocampus. c) Differential isoform expression in hippocampus and cortex. 
Transcripts with a fold change > 1 and an adjusted p value of < 0.01 are colored according to 
their novelty status and labeled with their corresponding gene name (color scheme in panels a,b) 
d) Detection of genes with greater novel read counts (NIC + NNC) than known.  e) Pnisr UCSC 
genome browser visualization showing a new combination of exons detected by PacBio. 
Expression levels of each isoform detected are is plotted on the right for cortex and hippocampus. 
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DISCUSSION 

We demonstrated here that with sufficient sequencing depth, long read data can 

be used to reproducibly quantify gene and transcript expression in homogeneous cell 

lines and in complex tissues. Our technology-agnostic long-read pipeline, TALON, 

simplifies the process of comparing long-read transcriptomes across different datasets 

and allowed PacBio and ONT transcriptomes to be directly compared. We found that 

our PacBio results are reasonably well-correlated with Illumina short-read data, 

particularly for gene expression levels above 2 TPM. We also found that, in our hands, 

the current PacBio platform captured more complete transcript models than did the 

current direct-RNA ONT, but that the former is prone to antisense transcript artifacts 

that apparently stem from the reverse transcription step into cDNA. It is also likely that 

many of the ISM-class of transcripts that we detected more prominently in ONT are 

false positives due to the pore ceasing to sequence midway through an RNA. While 

over 80% of the transcript models we detect in the well-studied GM12878 cell line were 

already known, we nonetheless found evidence of a number of new NIC and NNC 

transcript models that are supported independently by 5’ and 3’ ends from other 

genomics assays.  

 

In contrast to the homogeneous and frequently-studied GM12878 cell line, we 

found that a substantial number of genes in the mouse cortex and hippocampus 

produced more novel (NIC and NNC) isoform reads than known isoforms. Not 

surprisingly, this suggests that we are still underestimating the overall contributions of 

alternative splicing in tissues that are both more complex in terms of cell composition 
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and also less comprehensively measured to date. At this time, the goal of producing a 

reference-level annotation transcriptome for any given cell type or tissue is well-served 

by the PacBio platform, but our results also make it clear that any platform that provides 

transcript information by direct RNA sequencing, as the RNA ONT platform now does, 

makes a different and important contribution. At our current PacBio sequencing depth, 

we do not expect to encounter substantial issues with lack of complexity in our bulk 

cDNA libraries. However, as long-read cDNA sequencing depths increase, reads from 

PCR duplicates may become much more prevalent and would be difficult to detect 

without UMIs. This is never an issue with direct-RNA sequencing on the Nanopore 

platform because each read must correspond to a distinct mRNA molecule. As iterative 

advances are made on these platforms, and as other long-read systems are added, the 

ability to process and compare the outputs from all versions of all systems in a platform-

agnostic way will be increasingly important.     

  

In addition to the technology-specific challenges of each long-read platform, we 

identified some shared issues. While both PacBio and ONT could sequence most genes 

expressed in the cells, some very long transcripts were conspicuously missing or under-

represented in our data. For instance, in GM12878, we only detected 3 reads that fully 

matched known isoforms of the highly expressed XIST gene in terms of their splice 

junctions. Even the longest of these reads (3,539 nt) was missing several kb from the 5’ 

and 3’ ends of the annotated GENCODE model. More generally, while NIC and NNC 

transcript models looked identical to or better than known transcripts in terms of CAGE, 

poly(A), and RNA-PET validation, ISMs represent a challenge for both technologies. 
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This is particularly pressing as we detect more such ISMs in our brain tissue biosamples 

than in cell lines. We expect that parsing ISMs will be a challenge in human post-

mortem tissue samples, including reference collection efforts for ENCODE4, because 

RNA quality is typically lower than what we obtained from cell lines and fresh mouse 

tissue sources. The “Iso-seq” approach, which intentionally enriches long-read size 

catagories, has been to collapse ISM reads onto known transcripts. However, our 

results show that a subset of ISMs do have independent CAGE and 3’ end support. 

Thus, biological ISM forms are difficult to distinguish from truncated reads without, at 

minimum, some independent CAGE support. Interestingly, the XIST locus is crowded 

with CAGE peaks throughout its longest transcript model, suggesting that there may be 

multiple “shorter” isoforms produced than previously appreciated, with evidence for 

them having been ignored due to the lack of resolution using short-reads alone. ISMs 

are, in any case, useful models to incorporate into gene expression quantifications. With 

additional datasets and evidence for training, we anticipate that machine learning 

techniques will allow us to discriminate real ISMs from technical artifacts. Until then, it 

seems prudent to ignore ISMs for transcript discovery in the absence of CAGE (or 

similar) support. 

 

Clear challenges remain to generate fully comprehensive, high-fidelity long-read 

transcriptomes because of the still relatively noisy sequencing methods and imperfectly  

preserved RNAs.  That said, our results show that current long-read methods are 

already demonstrably superior to “pooled” short-read RNA-seq for reference annotation-

level transcriptomics if high quality mRNA can be extracted. The resulting gain in clarity 
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with respect to long-range isoform structure and associated isoform-specific 

quantification is already substantial, although relatively high costs remain a limiting 

factor.  At the time of this study, our long-read data costs were roughly an order of 

magnitude higher than their short-read counterpart, although a useful perspective is that 

this cost is comparable to that of short-read RNA-seq 10 years ago.  We expect that 

long-read data will decrease similarly in cost per experiment as these platforms mature.  

Even in the domain of single-cell RNA-seq, which is currently thriving on short single-

reads for molecule counting, long-read formats are beginning to be applied, aiming to 

capture the richness of isoform variation and regulation on a per-cell and per-cell-type 

basis47. That said, short-read transcriptomes will surely continue to play a prominent 

role for short RNA class substrates, for intractably degraded RNAs, and, increasingly, in 

biological settings where a few long-read transcriptomes can provide a reference 

against which larger numbers of companion short-read samples can be quantified.   

Ultimately, the transition to routine long-read transcriptome quantification will allow 

biologists to achieve clarity about functional mRNA isoform choices and their inferred 

protein products for any cell type, tissue, or disease state. 

 

METHODS 

Sample collection and RNA extraction 

GM12878 cells were grown and harvested as described in the ENCODE consortium 

protocols (encodeproject.org). Total RNA was extracted using the QIAGEN RNAEasy 

Plus kit (Cat. No. 74134). All animal experimental procedures were approved by the 

Institutional Animal Care and Use Committee of University of California, Irvine, and 
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performed in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals.  

 

Mice were anesthetized with CO2 and perfused with phosphate buffered saline (PBS) for 

5-7 minutes until most organs are clean from blood. Hippocampus and Cortex from two 

8-month male C57BL/6 mice were dissected and collected in HBSS no calcium no 

magnesium solution (cat. No. 14170112). Tissues were homogenized using the 

QIAshredder  while in lysis buffer included in the QIAGEN RNAEasy Plus kit (Cat. No. 

74134). Total RNA extraction was done following the vendor instructions. To degrade 

mRNA without a 5’ cap, total RNA was exposed to an exonuclease treatment using 

Terminator™ 5´-Phosphate-Dependent Exonuclease (Cat. No. TER51020). 

 

PacBio library preparation, sequencing, and initial data processing 

Starting from the depleted RNA, we followed a modified version of the SMART-

seq2 protocol to synthesize cDNA48. 1000 ng of cDNA were used as input for the 

PacBio library prep following the SMRTbell Template Prep Kit 2.0 instructions. 

Sequencing was done on the PacBio Sequel II machine, allocating 1 SMRT cell per 

biological replicate. Raw PacBio subreads were processed into circular consensus 

reads using the Circular Consensus step (CCS v4.0.0) from the SMRTanalysis 8.0 

software suite (parameters: --noPolish --minLength=10 --minPasses=3 –min-rq=0.9 –

min-snr=2.5) (Figure S1a). Next, adapter configurations were identified and removed 

using Lima v1.10.0 (parameters: --isoseq --num-threads 12 --min-score 0 --min-end-

score 0 --min-signal-increase 10 --min-score-lead 0). After this, full-length non-
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chimeric (FLNC) reads were extracted using the Isoseq3 Refine step (v3.2.2; 

parameters: --min-polya-length 20 --require-polya). This program considers a read to 

be FLNC if it contained the expected arrangement of 5’ and 3’ PacBio primers at the 

Lima stage as well as a poly-(A) tail. Refine orients the reads to the correct strand 

(reverse-complementing sequences as necessary), and removes the poly-A tails. The 

resulting FLNC reads were mapped to the reference genome using Minimap2 version 

2.17 (GRCh38 assembly for human cell types, and mm10 for mouse) with parameters 

recommended by the Minimap2 documentation for PacBio (-ax splice:hq -uf --MD).  

 

Illumina library preparation and sequencing for mouse brain samples 

Starting from the same cDNA used for the mouse brain PacBio libraries, we built short-

read libraries using the Nextera DNA Flex Library Prep Kit 

(https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/nextera-

dna-flex.html?scid=2017249vu1 <%22>). These libraries were sequenced on an Illumina 

NextSeq500 to a minimum of 50 million paired-75bp reads per sample. 

 

ONT library preparation and sequencing 

Starting from 45 μg of depleted RNA, we proceeded to the direct-RNA library prep 

following the RNA-002 kit instructions. Reverse transcription was used to get rid of 

secondary RNA structures. We used  R9.4 flowcells and MinKNOWN 2.0 was used to run 

the samples until having 2 millionraw reads. Basecalling was performed on the direct RNA 

ONT reads using ONT Guppy 3.2.1+334123b (parameters: -r --flowcell FLO-MIN106 --kit 

SQK-RNA002 --disable_pings -q 0 --read_batch_size 4000000 --reverse_sequence on -
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-u_substitution on -x "cuda:0 cuda:1") (Figure S1b). ONT reads were mapped to the 

reference genome using Minimap2 version 2.17. We used parameters recommended for 

ONT by the Minimap2 documentation (ax splice -uf -k14 -MD).  

 

Preparing reference genomes and transcriptome annotations 

The human and mouse reference genomes were obtained from the ENCODE 

portal (GRCh38 assembly for human cell types, and mm10 for mouse). All information 

other than the chromosome name was removed from the FASTA headers in the 

reference genome files. GENCODE v29 human and GENCODE vM21 mouse 

comprehensive GTF transcriptome annotations were downloaded from the GENCODE 

portal.  

 

Since all samples were sequenced with ERCC spike-ins and SIRVs, it was 

necessary to augment the reference genomes and transcriptomes with these 

transcripts. The sequences of the SIRVs and ERCCs (Set 3) as well as the SIRV GTF 

annotation were downloaded from Lexogen here: https://www.lexogen.com/wp-

content/uploads/2018/08/SIRV_Set3_Sequences_170612a-ZIP.zip. To create 

augmented reference genomes, we concatenated each of the human and mouse fasta 

files with SIRV_ERCCs_multi-fasta_170612a.fasta and SIRV_isoforms_multi-

fasta_170612a.fasta.  

 

Additional processing was needed before adding the SIRV and ERCC transcripts 

to the human and mouse annotations. Since no GTF file was provided for the ERCCs, 
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we created one by running merge_encode_annotations.py on the ERCC fasta file. The 

SIRV isoforms (SIRV_isoforms_multi-fasta-annotation_C_170612a.gtf) were processed 

with the separate_multistrand_genes.py script so as to separate transcripts located on 

different strands into separate genes. Next, we ran talon_reformat_gtf (TALON utility) 

on the ERCC and SIRV GTFs in order to add in explicit gene and transcript lines 

needed by the TALON program. These reformatted GTF files were then concatenated 

to the end of the human and mouse GENCODE annotations. 

 
TALON pipeline       

Following alignment to the genome, reference-based error correction was performed on 

the PacBio FLNC and ONT reads using TranscriptClean v2.0.2 (available on GitHub at 

https://github.com/mortazavilab/TranscriptClean). Reference splice junctions were 

derived from the GENCODE annotations using TranscriptClean accessory script 

get_SJs_from_gtf.py. For the human runs, we used VCF-formatted NA12878 truth-set 

small variants from Illumina Platinum Genomes to run TranscriptClean in variant-aware 

mode (--canonOnly + defaults). For the mouse datasets, we ran TranscriptClean without 

a VCF file (--canonOnly + defaults). By using the –canonOnly flag, we omitted any reads 

that still contained one or more un-annotated noncanonical splice junctions from the 

output.  

 After TranscriptClean, we ran the TALON module talon_label_reads on each 

corrected SAM file in order to compute the fraction of As following the end of each read 

alignment. We set the –ar parameter to 20 bp to match the length of the T sequence used 

in PacBio’s oligo-dT primer for poly-(A) capture. All TALON steps (including this one) were 
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run with version 5.0. TALON and accompanying documentation are available from 

https://github.com/mortazavilab/TALON. 

Human and mouse TALON databases were initialized from the GENCODE v29 

and GENCODE vM21 + SIRVs/ ERCC annotations using the talon_initialize_database 

module from the TALON package (parameters: --l 0 --5p 500 --3p 300). To annotate the 

GM12878 PacBio and ONT reads, we created a configuration file with all four datasets in 

it and ran the talon module on this file along with the human TALON database 

(parameters: --cov 0.9 --identity 0.8). To annotate the mouse cortex and hippocampus 

reads, we created a configuration file with all four datasets in it and ran the talon module 

on this file along with the mouse TALON database (parameters: --cov 0.9 --identity 0.8). 

 

 To perform long read quantification, transcript abundance matrices were extracted 

from the TALON databases using the talon_abundance module. We used the unfiltered 

abundance files for all gene-level expression analyses (omitting genomic transcripts ). To 

perform transcript-level analyses, we first used the talon_filter_transcripts utility to 

generate celltype and experiment-specific transcript whitelists (parameters: --maxFracA 

0.5 –minCount 5). This filtering process selected for transcript models that were 1) known 

in GENCODE/SIRV/ERCC, or 2) reproducibly detected at least 5 times in each specified 

dataset. Reads with > 0.5 fraction As (as specified by talon_label_reads) were omitted 

when computing this read support. We generated separate whitelists for the PacBio 

GM12878, ONT GM12878, PacBio cortex, and PacBio hippocampus dataset pairs. The 

resulting whitelists were used to generate filtered abundance files for transcript 
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quantification (using talon_abundance), as well as custom filtered GTF annotations 

(using talon_create_GTF).  

 Further details and custom scripts for data visualization are available on GitHub 

(https://github.com/mortazavilab/TALON-paper-2020).  

 

PacBio vs. Illumina short read comparison 

Illumina short-read RNA-seq reads from GM12878 were downloaded from the 

ENCODE portal in the fastq format (accession ENCSR000AEH). Quantification against 

the GENCODE v29 annotation was performed on each biological replicate using 

Kallisto16. The log fold changes between PacBio and Illumina counts for each GENCODE 

gene/transcript were computed using the exact test method in EdgeR (v3.28.1) following 

filtering of lowly expressed genes/transcripts and normalization. Bonferroni correction for 

multiple testing was performed on the resulting p-values. Genes/transcripts were 

considered significantly different in the two platforms if adjusted p < 0.01 and abs(log2FC) 

> 1. 

In addition, we computed the gene-level Spearman correlations between each 

long-read technology and Illumina for GM12878 for genes that were detected by both 

platforms. To do this, we first averaged the expression (in TPM) of each gene across 

biological replicates by platform. For Illumina, this meant averaging the Kallisto TPM 

results across replicates. For PacBio and ONT, we computed the gene-level TPMs from 

the unfiltered TALON abundance tables for each dataset (excluding genomic transcripts 

and novel genes), then averaged the replicates.  
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Comparison of PacBio and ONT transcriptomes 

We calculated gene quantification using the unfiltered TALON abundance files with 

genomic transcripts removed. For transcript quantification, we included transcript models 

in the union of the PacBio and ONT filtering whitelists.  

 

CAGE analysis 

Robust human CAGE peaks were downloaded from FANTOM5 in the BED 

format12.  The genomic coordinates were mapped from hg19 to hg38 using the UCSC 

genome browser LiftOver tool49. We obtained the start site of each long-read transcript 

model from our GTF transcriptomes, then used Bedtools to ascertain whether any CAGE 

peak overlapped the 100 bp region immediately up or downstream of each TSS50. 

 

Computational Poly(A) motif analysis 

Each GTF transcript model was converted to BED format. We extracted the DNA 

sequence of the last 35 bp in each transcript using the reference genome (GRCh38 

assembly for human cell types, and mm10 for mouse), then searched for the presence of 

a known 6-mer poly(A) motif as described in Anvar et al., 201851. 

 

RNA-PET analysis 
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RNA-PET clusters for GM12878 were downloaded in the BED format from the ENCODE 

portal (accession ENCFF001TIL). The genomic coordinates were mapped from hg19 to 

hg38 using the UCSC genome browser LiftOver tool49. We obtained the start and end site 

of each long-read transcript model from our GTF transcriptomes, then used Bedtools to 

check whether any pair of RNA-PET clusters was located within 100 bp of the start and 

end50.  

 

Mouse Hippocampus and Cortex data analysis 

Gene and transcript abundances were calculated as described above. For differential 

transcript expression analysis, we used EdgeR (v3.28.1) and adjusted the resulting p-

values using the Bonferroni method. Transcripts with abs(log2FC) > 1 and an adjusted p-

value < 0.01 were considered significantly differentially expressed. We used a custom 

script to identify genes that had higher novelty counts (NIC+NNC) separately for cortex 

and hippocampus and identified the overlapping genes. The UCSC genome browser was 

used to visualize transcripts colored according to their novelty. 
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Supplementary Figure Legends 

Figure S1: Platform-specific data processing performed prior to running TALON 

pipeline. a) Sequencing and preprocessing of PacBio Sequel data. The Lima/Refine step 

in particular is important because it removes reads that did not receive a full sequencing 

pass and orients the remaining reads to the correct strand. b) Sequencing and 

preprocessing of ONT direct-RNA data. Since the RNA itself is sequenced poly(A) first, 

no additional read orientation steps are required. 

 

 

Figure S2. Performance of TALON filtering on SIRV transcripts sequenced with 

PacBio Sequel II. a) Number of SIRV-aligned reads assigned to each transcript novelty 

category in the GM12878 Rep1 and Rep2 datasets after TALON filtering. b) Number of 

distinct transcript models called per novelty category from the SIRV-aligned reads after 

TALON filtering. Union of GM12878 Rep1 and Rep2 is shown. c) Number of SIRV-aligned 

reads assigned to each transcript novelty category in the GM12878 Rep1 and Rep2 

datasets (no filtering). d) Number of distinct transcript models called per novelty category 

from the SIRV-aligned reads (no filtering). Union of GM12878 Rep1 and Rep2 is shown. 

e) Proportion of unfiltered SIRV reads in each novelty category that display evidence of 

internal priming (> 50% As in 20bp window following the alignment). Union of GM12878 

Rep1 and Rep2 is shown. 

 

Figure S3. TALON read length distributions for PacBio GM12878 datasets. a) Rep 

1. b) Rep 2.  
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Figure S4. Further characterization of gene detection in GM12878 by short reads 

and PacBio long reads. a) Length of known genes by differential expression category. 

Gene length was computed by taking the median length of all known transcripts per gene. 

b) GC content of known genes by differential expression category. Gene GC content was 

computed by taking the median GC of all known transcripts per gene. 

 

 

Figure S5. Length and exon count by transcript novelty type in GM12878 PacBio. 

a) Read length distributions by novelty category. b) Number of exons per transcript model, 

grouped by novelty type assignment. 

 

Figure S6. Epstein-Barr Virus transcriptome characterization in GM12878. a) Gene 

expression levels in GM12878 from the EBV chromosome and from the human 

chromosomes, labelled by gene novelty. b) Transcript expression levels in GM12878 from 

the EBV chromosome and from the human chromosomes, labelled by transcript novelty. 

Novel transcripts have been filtered for reproducibility between GM12878 biological 

replicates. c) Visualization of TALON GTF annotations in the UCSC genome browser for 

EBV transcripts in GM12878. 

 

Figure S7. Characterization of GM12878 cell line by Oxford Nanopore direct-RNA 

sequencing. TALON read length distributions for Nanopore ENCODE Tier 1 cell line 

datasets a) GM12878 Rep 1 and b) GM12878 Rep 2. c) Expression level of known 
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transcript models and reproducible ISMs in PacBio vs. ONT for GM12878 (Pearson r = 

0.48, Spearman rho = 0.08). 

 

Figure S8. TALON and FLAIR gene detection across sequencing platforms and 

samples. Proportion of genes expressed in Illumina GM12878 RNA-seq data that are 

also detected by TALON, FLAIR, or both in the corresponding a) PacBio and b) ONT 

long-read datasets. Genes are divided into bins based on their Illumina expression level 

(TPM). 

 

Figure S9. Reproducibility of PacBio gene and transcript expression in mouse 

cortex and hippocampus. a) Expression level of known genes in each cortex biological 

replicate. b) Expression level of known transcripts in each cortex biological replicate. c) 

Expression level of known genes in each hippocampus biological replicate. d) Expression 

level of known transcripts in each hippocampus biological replicate.   

 

Figure S10. TALON database schema. Relationships between the 14 tables are 

indicated with grey lines, and primary keys are shown in bold.  

 

Supplementary Tables 

Table Name Table description 

Table S1 ENCODE/GEO IDs for generated data 

Table S2 Readwise TALON annotation file for PacBio and ONT GM12878 datasets 

Table S3 Readwise TALON annotation file for PacBio Cortex and Hippocampus datasets 

Table S4 PB GM12878 SIRV TALON abundance table 

Table S5 PB GM12878 SIRV TALON abundance (filtered) 
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Table S6 PacBio GM12878 TALON abundance table 

Table S7 PacBio GM12878 TALON abundance table (filtered) 

Table S8 PacBio GM12878 TALON GTF table (filtered) 

Table S9 PacBio-Illumina differential gene expression 

Table S10 PacBio-Illumina differential transcript expression 

Table S11 EBV TALON abundance table 

Table S12 EBV TALON abundance table (filtered) 

Table S13 EBV TALON GTF (filtered) 

Table S14 ONT GM12878 TALON abundance table 

Table S15 ONT GM12878 TALON abundance table (filtered) 

Table S16 ONT GM12878 TALON GTF table (filtered) 

Table S17 PacBio-ONT GM12878 TALON abundance table 

Table S18 PacBio-ONT GM12878 TALON abundance table (filtered) 

Table S19 PacBio-ONT GM12878 TALON GTF table (filtered) 

Table S20 Known genes enriched in ONT relative to PacBio 

Table S21 Known transcripts enriched in ONT relative to PacBio 

Table S22 Known gene detection by TALON and FLAIR 

Table S23 Known transcript detection by TALON and FLAIR 

Table S24 PacBio Mouse Brain TALON abundance table 

Table S25 PacBio Mouse Brain TALON abundance table (filtered) 

Table S26 PacBio Mouse Brain TALON GTF table (filtered) 

Table S27 Differential transcript expression in mouse cortex and hippocampus tissue 

Table S28 Genes with high degree of novelty in cortex and hippocampus 
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