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The gene expression profiles of distinct cell types reflect com-
plex genomic interactions among multiple simultaneous biologi-
cal processes within each cell that can be altered by disease pro-
gression as well as genetic background. The identification of
these active cellular programs is an open challenge in the anal-
ysis of single-cell RNA-seq data. Latent Dirichlet Allocation
(LDA) is a generative method used to identify recurring pat-
terns in counts data, commonly referred to as topics that can
be used to interpret the state of each cell. However, LDA’s in-
terpretability is hindered by several key factors including the
hyperparameter selection of the number of topics as well as the
variability in topic definitions due to random initialization. We
developed Topyfic, a Reproducible LDA (rLDA) package, to ac-
curately infer the identity and activity of cellular programs in
single-cell data, providing insights into the relative contribu-
tions of each program in individual cells. We apply Topyfic
to brain single-cell and single-nucleus datasets of two 5xFAD
mouse models of Alzheimer’s disease crossed with C57BL6/J
or CAST/EiJ mice to identify distinct cell types and states in
different cell types such as microglia. We find that 8-month
5xFAD/Cast F1 males show higher level of microglial activation
than matching 5xFAD/BL6 F1 males, whereas female mice show
similar levels of microglial activation. We show that regulatory
genes such as TFs, microRNA host genes, and chromatin regu-
latory genes alone capture cell types and cell states. Our study
highlights how topic modeling with a limited vocabulary of reg-
ulatory genes can identify gene expression programs in single-
cell data in order to quantify similar and divergent cell states in
distinct genotypes.

Introduction
The different cell types constructing a tissue work together
to carry out the functions of that tissue in response to various
developmental and environmental cues by activating specific
cellular programs. Single-cell and single-nucleus RNA se-
quencing (RNA-seq) enable the identification of cell types,
subtypes, and cell states through their single-cell transcrip-
tomes, enhancing our understanding of cellular phenotype
heterogeneity and composition within complex tissues such
as the brain(1–3). A common approach for cell type annota-

tion relies primarily on unsupervised clustering methods(4),
which partition cells based on the similarity of their gene ex-
pression patterns. This is followed by manual cell type as-
signment for each cluster based on differentially expressed
markers from literature. The overall accuracy of this ap-
proach depends on both the clustering accuracy(5) and the
prior knowledge of marker gene expression levels(6). For
example, marker genes could be expressed in more than one
cell type, complicating the annotation process. More impor-
tantly, this cluster-based approach assumes that cells can only
be part of a single cluster, thereby averaging the cell-to-cell
variability within that cluster.

Here, we focus on a key challenge of inferring complex cel-
lular states and identities that are encoded by patterns of gene
expression. We assume that each cell or nucleus engages in
a limited number of cellular programs, and its observed tran-
scriptome is determined by the sum of these active programs.
To represent this, we leverage grade of membership (GoM)
models(7, 8), allowing each cell to have partial membership
in multiple cellular programs. One such model is Latent
Dirichlet Allocation (LDA)(9), a probabilistic algorithm ca-
pable of inferring recurring combinations referred to as top-
ics. LDA starts by randomly assigning topics to each word
in a document, which in this case are cells(8). Due to this
random initialization, different topic assignments and, con-
sequently, different topic representations for each document
may arise in repeated runs. As a result, the topics discovered
by LDA can vary across different runs of the algorithm. To
address this issue of topic variability, one common approach
is to use a fixed random seed before running LDA, ensuring
consistent random initialization across different runs. How-
ever, there is no guarantee that this fixed seed will produce
the best topics, as some randomly defined topics might be
stuck in local optima that lack biological significance.

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disease characterized by memory loss(10). Microglia
are the resident macrophages of the brain that mediate brain
homeostasis by regulating immune function and promot-
ing neuronal homeostasis and neuroprotection. To main-
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tain homeostasis, microglia damage or kill neurons with ab-
normal profiles(11, 12). However, not all the microglia in
the brain behave identically. Single-cell RNA-seq studies
have identified new microglial subtypes with unique tran-
scriptional and functional characteristics, termed “disease-
associated microglia” (DAM) in animal models of AD(13).
DAMs are characterized by the upregulation of genes asso-
ciated with late-onset AD, such as apolipoprotein E (Apoe),
Itgax, Csf1r, and Tyrobp, whereas Tmem119, Cd33, and Maf
are downregulated. However, in cluster-level analyses, these
cells are typically treated either as part of distinct clusters or
positioned on a pseudo time continuum between homeostasis
and activation.
Here, we develop Topyfic, a Python package that (a) runs
LDA multiple times with different random seeds, (b) ag-
gregates similar topics across runs to compute reproducible
topics, and (c) filters out low-participation topics. Using
this strategy, we find reproducible topics, while simultane-
ously filtering out noisy, irreproducible topics. We apply
Topyfic to single-nucleus and single-cell datasets generated
by the ENCODE and MODEL-AD consortiums from mice
with and without the 5xFAD transgene in either a C57BL/6J
(MODEL-AD) or a C57BL/6J x CAST/EiJ background (EN-
CODE) to identify topics that are (a) detected in both geno-
types with and without the transgene, and (b) microglia-
specific. We then train additional topics with a subset of regu-
latory genes such as transcription factors and show that these
regulatory topics that we recover also capture cell activation
using regulatory genes alone.

Results
Reproducible LDA topics using Topyfic. Topyfic esti-
mates the most likely number of topics while also maxi-
mizing the number of meaningful topics. The core idea of
Topyfic is that topics that are found repeatedly across mul-
tiple LDA runs are more reliable than topics found in any
single run, which could be suboptimal as the result of poor
random initialization (Fig. 1A). Starting from a cell-by-gene
expression matrix in h5ad format, Topyfic first trains a Latent
Dirichlet Allocation (LDA) model on the provided dataset us-
ing different random seeds (see methods for a detailed tech-
nical description of Topyfic parameter settings). Topyfic then
uses Leiden clustering(14) in gene-weight space to combine
similar topics across individual runs to construct a consensus
set of topics called the TopModel. Finally, Topyfic calculates
cell-topic participation based on the TopModel and filters out
any topic with user-defined low participation. Topyfic also in-
cludes several helper functions to analyze and visualize top-
ics and topic participation in the training and testing datasets.
Determining the number of topics is a challenging step for
the application of LDA. We use two diagnostic metrics and
visualizations to help guide this decision. First, we train our
TopModels using a different starting number of topics, fol-
lowed by pruning low-participation topics. In general, ap-
plying our consensus models to repeated runs with a smaller
number of topics (K) than the optimal number will lead us
to discover more clusters of topics (N). As we increase K,

we expect N to stay relatively stable until higher Ks result
in fewer N. We therefore select our parameter K to be when
K=N. Alternatively, we can also calculate the perplexity. A
lower perplexity score is an indication of a better model. We
observe that perplexity tends to decrease rapidly before flat-
tens out. In this approach, we choose the smallest value of K
that is able to explain the data: i.e. the value of K at the point
in which the perplexity flattens out (Fig. S1A).
We evaluated the sensitivity of the resulting topics to im-
portant parameters. First, we investigated the effect of the
number of cells on the number of reproducible topics. As ex-
pected, increasing the number of cells led to the identification
of rarer and diverse gene expression programs with more top-
ics (Fig. S1B). In the final steps of building our TopModels,
we filter topics with low cell-topic participation. Increasing
the minimum cell-topic participation threshold enabled us to
retain topics with stronger signals in each cell (Fig. S1C).
As a default criterion, we focused on topics that represent at
least 1% of the gene expression in cells. We then use Leiden
clustering to form our consensus topics, therefore all the in-
puts related to clustering, such as the resolution, which is a
value controlling the coarseness of the clustering, can also be
altered. Increasing this value can result in more topics, how-
ever, the defaults were found to be adequate for our analyses
(Fig. S1D).

Comparing a mouse model of AD across two genetic
backgrounds. We first analyzed the overall characteristics
of two related mouse brain datasets for the 5xFAD mouse
model of AD(15) and matching controls for 8 month old
mice before applying Topyfic. The genetic background of
the 5xFAD mouse model of AD is C57BL/6J (“BL6”) and
it is normally studied as a hemizygote, i.e. with only one
copy of the transgene on an otherwise regular BL6 back-
ground. The first dataset consists of single-nucleus RNA-
seq from the cortex and hippocampus of 2 male and 2 fe-
male 5xFAD x CAST/EiJ F1 hybrid mice and matching BL6
x CAST/EiJ controls from the ENCODE consortium, while
the second dataset consists of 2 male and 2 female cortex
and hippocampus snRNA-seq as well as microglia single-cell
RNA-seq of 5xFAD hemizygotes and matching BL6 controls
from the MODEL-AD consortium (Fig. 1B-C). As all mice
from ENCODE have the BL6 x CAST/EiJ F1 background,
and all MODEL-AD mice have the BL6 background, we will
use the consortium names and genotypes interchangeably.
All experiments were performed using the Parse Biosciences
split-pool method(16, 17) which we refer to as Split-seq.
Separate Split-seq experiments were performed for the EN-
CODE and MODEL-AD mice and were deposited in their
respective online repositories. For each dataset, demultiplex-
ing and alignment were carried out using Parse Biosciences’
split-pipe software and STARSolo(18). Scrublet(19) was em-
ployed to identify doublets in each dataset, followed by qual-
ity control (QC) using Seurat(20) (Methods). The filtering
successfully recovered a combined total of 110,907 nuclei
and 5,546 microglia cells (Fig. 1C), which were annotated
using marker genes and label transfer with external reference
data from the Allen Brain Institute dataset(21) (Fig. S2,S3

2 | bioRχiv Rezaie et al. | Topyfic

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582178doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582178
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Methods).
Glial cells such as microglia, astrocytes, and oligodendro-
cytes constitute a substantial fraction of the mammalian
brain, representing 27.5% of the nuclei in our snRNA-seq
datasets. The proportion of glial cells is influenced by sev-
eral factors, including genotype, sex, and brain region. We
examined the variation of glial cells by genotype and sex
in each tissue separately. As expected, we found a higher
portion of microglial cells in 5xFAD mice regardless of ge-
netic background. Despite recovering more nuclei from BL6
mice, we observed a higher proportion of glial nuclei in
the BL6/CAST genotype, highlighting how genetic diver-
sity contributes to substantial differences in glial cell abun-
dance. Interestingly, there is more variation between sexes
in mice with the BL6 background compared to mice with the
BL6/CAST background. In particular, 5xFAD/CAST males
have similar numbers of microglia in the hippocampus when
compared to 5xFAD/CAST females, which is substantially
higher than 5xFAD males (Fig. 1D-E).
Expression levels of marker genes for disease-associated mi-
croglia (DAM), astrocytes, and oligodendrocytes in pseudo
bulk for each mouse showed higher expression in 5xFAD ver-
sus WT and more uniformity between replicates and sexes
in 5xFAD/CAST than 5xFAD in both hippocampus and cor-
tex (Fig. 1F). Principal component analysis (PCA) confirmed
that genotype contributes to major transcriptomic differences
across the dataset, with PC2 (8.54%) corresponding to geno-
type and PC3 (6.14%) corresponding to brain region (Fig.
1G and Methods). Comparison of the median number of
UMIs across cells in each cell type in AD and WT samples
reveals reproducible patterns across both genotypes, such as
neurons generally having more UMIs compared to glial cell
types (Fig. 1H-I). Interestingly, we do not detect differences
in the number of UMI between microglia whether using nu-
clei or whole cells (Fig. 1H).
In general, we observe a higher number of UMIs per nuclei in
BL6/CAST genotype even though both consortia used simi-
lar sequencing depths. These results indicate that the dif-
ferences are more likely associated with the genetic identity
of mice, such as genotype, rather than technical procedures
such as sequencing depth. In summary, 5xFAD/CAST males
at 8 months show a higher proportion of DAM microglia
that matches their female counterparts, unlike regular 5xFAD
males at 8 months, which have lower proportion of DAM mi-
croglia than their female counterparts.

Identifying topics related to cell type and cell state. We
trained Topyfic using (a) 1 male replicate and 1 female repli-
cate of WT mice from both genotypes (4 mice) and (b) 1 male
replicate and 1 female replicate of 5xFAD transgene-carrying
mice from both genotypes (4 mice) separately using all genes
(Fig. 2A) with varying numbers of topics, ranging from K =
5 to 50. This iterative process allowed us to evaluate differ-
ent K values and identify the final number of topics (N) that
best captured the underlying structure in our data, which was
found to be K=15 (Fig. 2B, methods). The TopModels for
each genotype were aggregated to form our final TopModel
with 28 topics that passed our low participation filter on the

second replicates. For comparison with subsequent topics de-
rived from different gene sets and cell types, we label these
topics as asn1 through 28, where ‘asn’ stands for ‘all genes,
single-nucleus’.

We assessed the distribution of cell-topic participation, fo-
cusing on whether a topic was the predominant topic in a
cell. We also performed a topic-trait relationships analysis to
capture correlations between each topic and major cell types,
cell states, genotype (BL6, BL6/CAST), and transgene pres-
ence (5xFAD and WT) (Fig. 2C). Topics exhibiting high cell
participation consistently showed enrichment for specific cell
types. Conversely, topics with low participation were gener-
ally not associated with any particular cell type. We identified
topics asn4, asn17, and asn26 as corresponding to microglia,
each displaying varying levels of cell-topic participation. No-
tably, asn17 exhibited the highest participation, while asn26
showed the lowest (Fig. 2C). Our snRNA-seq dataset in-
cludes 2,440 microglia, 77% of which are from mice with
the 5xFAD transgene. The structure plot of microglia nu-
clei displays cell-topic participation as a stacked bar plot for
each nucleus, grouped by genotype, sex, and tissue (Fig. 2D,
methods). While both asn4 and asn17 are correlated with
presence of the transgene, asn programs in microglia show
that asn17 dominates in the transgenic mice. In mice without
the transgene, microglia have a predominant mixture of cellu-
lar programs consisting of 50% asn4, 20% asn17, 7% asn26,
and 23% from the remaining topics. By contrast, transgenic
mice show two distinct cellular program patterns, suggesting
the presence of two distinct cellular states in the mice. A mi-
nority of cells show program combinations that resemble the
WT samples, which indicate a population of homeostatic mi-
croglia. The majority of microglia in transgenic mice show a
significantly higher ( 65%) participation of asn17, which rep-
resents the heightened activation state of these microglia (Fig.
2E). Thus, Topyfic recovers topics representing different cell
states and cell types for minor cell types such as microglia
across both genotypes.

The importance of a gene’s expression to a given topic is
called the gene weight. To gain insights into the differences
between the two major microglia topics, we compared the
weights of genes in asn4 and asn17 that have weights greater
than 1. We found 120 genes specific to asn4 and 585 genes
specific to asn17, as well as 1,659 genes shared between the
two topics (Fig. 2F). Key genes associated with homeostatic
microglia, such as Tmem119, exhibited significantly higher
weights in asn4 compared to asn17. In contrast, genes linked
to disease-associated microglia (DAM) such as Csf1r, Itgax,
and Apoe, were exclusively represented in asn17 (Fig. 2F).
By using an MA plot to compare topics, we found a total of
138 genes with differential weights (modified z-score > 2)
in asn4, including 120 genes with large absolute log ratios
(M) value (> 6.5). Conversely, asn17 displayed differential
weights in 835 genes (modified z-score < -2), of which 585
had absolute log ratio (M) values > 7.5. In particular, genes
overexpressed in stage 2 DAMs, such as Apoe, Itgax, Csf1r,
Lpl, and Axl13 were among the differentially higher weighted
genes in asn17 (Fig. 2G). Genes related to microglial cell
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Fig. 1. Overview of Topyfic and datasets. A. Overview of Topyfic workflow, as described in the text. B. Diagram of experimental design of single cell and single nucleus
RNA-seq using Split-seq. C. Number of recovered nuclei/cells from each genotype after filtering. D-E. Proportion of glial cells recovered from a single nucleus dataset in each
genotype in D. the hippocampus and E. cortex. F. Hierarchical clustering of gene expression markers for microglia, astrocytes, and Alzheimer’s disease (AD) marker genes
in each pseudobulked sample. G. PCA plot of pseudobulked samples. H-I. Comparison of the median of UMI counts in cell types in AD mice vs. WT H. in MODEL-AD and I.
in ENCODE datasets. Dot size reflects the number of nuclei in each cell type.

4 | bioRχiv Rezaie et al. | Topyfic

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582178doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582178
http://creativecommons.org/licenses/by-nc-nd/4.0/


identity, such as Tgfbr1 and Hexb(22), shared similar ranks in
both topics, even though they had higher weights in asn17. In
contrast, genes primarily expressed in homeostatic microglia
such as Tmem119 and Slc2s5 were exclusively represented
in asn4, whereas DAM genes Apoe, Itgax, and Csf1r only
had significant weights in asn17 (Fig. 2H). Thus, genes with
shared or specific weights in a topic can be correlated to the
known underlying biology, as demonstrated in this case by
the microglial neuroinflammatory signatures in mice with the
5xFAD transgene.

Recovering topics for different activation levels in mi-
croglia scRNA-seq. Having demonstrated its performance
and utility on snRNA-seq from tissues, we applied Topyfic
to our complete microglia single-cell data from 5xFAD and
matching BL6. After training the TopModel with multiple
values of K, we selected K=5, yielding 6 topics labeled sc1-
sc6 (Methods). Each topic is the top participating topic in
a subset of microglia (Fig. 3A). While calculating the cor-
relation between each topic and sex did not reveal any sex-
specific topics (Fig. 3B), analyzing the contribution of each
topic in each genotype uncovered differences in activity be-
tween the genotypes (Fig. 3C). The structure plot illustrates
three distinct cellular programs. The first combination of pro-
grams is high in sc6 with high levels of Csf1, and is more
prevalent in 5xFAD than in BL6. The second combination of
programs contains a relatively consistent proportion of sc2,
sc3, and sc5 in both genotypes, suggesting a closer associ-
ation with homeostatic microglia. A subset of these home-
ostatic cells also have participation of sc6 and low levels of
sc1. The third combination of programs is more pronounced
in 5xFAD mice and is primarily composed of sc1, with sig-
nificantly lower participation of sc3 and sc5 compared to the
previous program, indicating a stronger association with ac-
tivated microglia (Fig. 3D).
Comparison of genes with weights >1 between sc1 and sc2
revealed differential weights in 1,794 genes, with only 24
genes in sc2, including the miR-155 host gene (Fig. 3E). Mi-
croRNAs (miRNAs) play a role in modulating inflammatory
responses in microglia, and their profiles are altered in AD.
Notably, the pro-inflammatory miRNA, miR-155, shows in-
creased expression in the AD brain(23). We found disease-
associated microglia (DAM) genes such as Trem2, Apoe, It-
gax, Clec7a, Axl, and Lpl, alongside typical microglia gene
markers such as Tmem119, Olfml3, and Cd68 with higher
weights in sc1 (Fig. 3E). A comparison between sc1 and sc3
reveals 562 genes with higher weights in sc1 (modified z-
score > 2) and 247 genes with higher weights in sc3 (modified
z-score < -2) (Fig. 3F). Primed microglia have the potential to
induce the production of amyloid β (Aβ), tau pathology, neu-
roinflammation, and reduce the release of neurotrophic fac-
tors. This can lead to the loss of normal neurons in both quan-
tity and function, a phenomenon strongly associated with
AD. Genes such as Cst7 and Slc2a5, part of the primed mi-
croglia pathway(24), were upregulated in sc1. Comparison
between sc1 and sc5 reveals 465 genes with weights higher in
sc1 (modified z-score > 2) and 280 genes with weights higher
in sc5 (modified z-score < -2) (Fig. 3G). In all three compar-

isons, genes associated with disease-associated microglia are
higher in sc1 compared to the three homeostatic programs.
Weights and ranks of homeostatic and DAM genes across mi-
croglial cells and microglial nuclei are similar between top-
ics sc1 and asn17. Genes such as Lpl, Apoe, and Trem2 ex-
hibit higher gene weights and lower ranks in sc1 and asn17
compared to the rest of the single-cell topics, including mi-
croglial topic asn4 (Fig. 3H). Lipoprotein lipase (Lpl), the
rate-limiting enzyme in lipoprotein hydrolysis, is predom-
inantly expressed in microglia such as phagocytic disease-
associated microglia thought to be protective in AD(25). In-
creased expression of genes such as ApoE, Trem2, and Lpl
in microglia during development, damage, and disease sug-
gests that increased lipid metabolism is needed to fuel pro-
tective cellular functions such as phagocytosis(26). Thus,
Topyfic recovered an activated microglial state topic using
either single-cell or single-nucleus RNA-seq, with the main
difference corresponding to how scRNA-seq topics capture
multiple subtypes of homeostatic microglial programs.

Topics derived from regulatory genes are sufficient to
define cell types and cell states. While numerous genes
are used as markers for distinct cell types and states, we
hypothesized that cellular programs are fundamentally con-
structed from a core set of regulatory genes. Therefore,
we explored identifying cellular programs using a restricted
LDA vocabulary of regulatory genes. Transcription factors
and other genes based on Gene Ontology (GO) term annota-
tions were chosen based on their impact on transcriptional
regulation, including known regulatory genes such as the
Id family (inhibitors of DNA binding and cell differentia-
tion, despite lacking a DNA binding domain themselves)(27)
(Methods). Overall, TFs constitute approximately 50% of the
2,701 genes included in our regulatory gene list (Fig. 4A).
This approach aims to elucidate impactful cellular programs
using a curated vocabulary.
We trained Topyfic models on 52,685 nuclei across 2,701
regulatory genes using various K values as described previ-
ously, and once again combined models with K = 15 to ob-
tain 27 reproducible topics labeled as rsn (regulatory single
nucleus). Analysis of topic-trait relationships showed that
individual topics are highly correlated to specific cell types,
5xFAD transgene presence, or genotype. For instance, both
rsn1 and rsn22 correspond to microglia while rsn1 also corre-
lated to the transgene presence, rsn3 and rsn15 to astrocytes,
rsn2 and rsn14 to oligodendrocytes, and a dozen topics cor-
respond to different neuronal subtypes (Fig. 4B). Similarly
to the results using all genes, topics with the highest maxi-
mum cell participation are consistently enriched for specific
cell types or cell states. By contrast, topics with low maxi-
mum cell participation are typically not associated with any
particular cell type (Fig. 4B). At our chosen resolution, all
cell types with > 350 nuclei (0.32%) are associated with at
least one topic. In summary, our topics demonstrate a strik-
ing alignment with our annotated cell types.
The structure plot of microglia nuclei shows that as cells ac-
tivate, rsn22 is gradually replaced by rsn1 while minor top-
ics remain constant (Fig. 4C). Comparing the gene weights
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Fig. 2. Topic modeling in single nuclei from 5xFAD/BL6 and 5xFAD/CAST cortex and hippocampus. A. Topics were called in 5xFAD transgenic mice and control mice
separately using the first biological replicate for each mouse pair. After finding the best k to describe each training set separately, resulting topics were combined into a single
TopModel, which was applied to the second technical replicate. B. The number of starting topics (K) versus the number of final topics (N) on the separate runs, and the
combined models. Choosing K=15 for the individual runs led to a final set of 28 combined topics after filtering. C. Topic-trait relationship of the Spearman correlation between
traits such as major cell type, strain, and transgene, across all topics. “Strain” indicates the background of mice, either BL6 (red) or BL6/CAST (blue). “Transgene” shows if the
mice have the 5xFAD transgene (red) or not (blue). The violin plots show the distribution of cell topic participation whenever the topic is top ranked topic in a cell. D. Overall
topic participation in microglia nuclei by genotype. Three major microglia topics were annotated. E. Structure plot of topic participation for each nucleus sorted by hierarchical
clustering in each group (same genotype, sex, and tissue). F. Gene weights of the main two microglia topics asn4 and asn17 in log-log plot. G. MA plot comparing asn4 and
asn17, where the X-axis (A) represents the average weight of the gene between both topics in the comparison, and Y-axis (M) represents log base 2 of the fold change of
gene weight between topics. The color of each dot shows the number of topics (out of 28) where each gene has a weight above one. Modified z-score also indicated genes
that were significantly differentially weighted between both topics in the comparison. H. Gene weights and the rank of each gene within the topic shown for asn4 and asn17.
Color represents the weights of genes in the log2 scale.

of the two microglia topics reveals remarkably similar topic
compositions, aligning with our expectations (Fig. 4D). Only
a few genes exhibit an absolute modified z-score value > 2
(93 in rsn1, 15 in rsn22) (Fig. 4D). Among the 93 genes up-
regulated in rsn1, microglia gene markers such as Ank, Hif1a,
Arid5b, Creb3l2, and Srpk2 show the highest modified z-
scores. The expression of serine/threonine-protein kinase 2
(Srpk2) is associated with the production of proinflammatory
cytokines and M1 polarization of microglial cells, suggest-
ing a potential connection to the cognitive decline observed
in the AD mice model(28). Ank is a membrane-phosphate
transporter that has a microRNA, Mir7117, embedded in its
intron. Ank exhibits the highest absolute log ratio (M) value
(10.8) and is also upregulated in laser-captured microglia in

the brains of individuals with AD(29). In summary, regula-
tory genes alone can differentiate between homeostatic and
disease-associated microglial states.

We evaluated the similarity between topics learned using all
genes (asn) and regulatory genes (rsn) using cosine similarity
(methods). Using a similarity threshold of > 0.9, we identi-
fied 14 clusters of highly correlated topics that matched asn
topics to rsn topics (Fig. 4E). As anticipated, topics repre-
senting common cell types were found to cluster together
with at least one topic from each method type. At the selected
threshold, activated microglia topic rsn1 only matches topic
asn17, whereas homeostatic microglia rsn22 only matches
the corresponding asn4. We further clustered the nine mi-
croglia topics (2 asn, 6 sc, 2 rsn) and found a higher correla-
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Fig. 3. Topic modeling in scRNA-seq of microglia. A. Distribution of maximum cell-topic participation in each cell in each topic. B. Topic-trait correlation between sex or
transgene and each topic. C. Topic participation broken down by genotype. D. Structure plot of microglia cells sorted by genotype and sex show topic participation in each
cell. E-G. Comparison of gene weights for sc1 (activated microglia topic) E. versus sc2, F. versus sc3, and G. versus sc5. Color represents the weights of genes in the log2
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tion of activated microglia topic sc1 with asn17 and rsn1 than
with the other asn and rsn topics (Fig. 4F). Thus, the expres-
sion patterns of regulatory genes alone are adequate to define
cell types in the brain and states of microglial activation.

Discussion
We developed a grade of membership (GoM) model using
Latent Dirichlet allocation (LDA) called Topyfic and applied
it to mouse single-cell and single-nucleus RNA-seq brain
datasets to infer topics that capture cell types, subtypes, and
cell states. Current implementations of LDA for analyz-
ing single-cell RNA-seq data do not consider the stability
and consistency of the model(30–33). A robust LDA model
should be less sensitive to variation in the initial conditions,
such as different random seeds. To achieve this, we imple-
mented reproducible LDA (rLDA) in Topyfic, which auto-
matically runs LDA multiple times and aggregates similar
topics. In particular, our strategy identifies the optimal num-
ber of topics at the given resolution. We then score topic
participation in the whole dataset, which enables us to an-
chor each topic to a specific cell type, guiding the subsequent
inference of the global topic distributions over genes to pri-
oritize genes differentially weighted in each topic.
We applied Topyfic to mouse brain tissues and microglia cells
in control and well established and thoroughly examined AD
mouse models such as 5xFAD to validate our strategy. We re-
covered topics that reflect different cell types, including glia
with different levels of activation. Interestingly, our findings

indicate increased DAM microglia in male 5xFAD/CAST
F1s compared to male 5xFAD/BL6 mice. While we recover
the expected sex-specific difference in the higher amount of
detected DAM microglia in female 5xFAD/BL6 mice com-
pared to male 5xFAD/BL6 mice as previously reported(15),
this pattern is not seen in 5xFAD/CAST F1s, where both
sexes show an equal proportion of DAM microglia. This
suggests that genetic variation affects disease progression in
the different sexes in mouse models of AD. While previous
studies have compared APP/PS1 transgene expression in in-
bred wild-derived strains such as CAST also at 8 months of
age and found similar levels of microglia activation in trans-
genic CAST and transgenic BL6, the study only analyzed
females(34). Whether it is 5xFAD/CAST F1 males that are
atypical because of their increased activation or alternatively
5xFAD/BL6 inbred males that are atypical because of their
lower activation remains to be determined.

We have shown that Topyfic recovers topics related to cell
types or activities, including multiple topics relating to dis-
tinct activation states in microglia. We also show that us-
ing regulatory genes is enough to identify cell types or cell
states by limiting our dictionary of genes to those that are the
most likely to be directly involved in transcriptional and post-
transcriptional regulation. For example, the top differential
gene in topic rsn1 was Ank1, which has a 4-fold upregulation
in AD microglia(29). While Ank1 is a structural protein, it
is also the host gene of Mir7117, which suggests that the mi-
croRNA could be playing a role in AD. This potential role for
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Fig. 4. Topic modeling using regulatory genes. A. Breakdown of regulatory gene categories in mouse. B. Distribution of cell-topic participation in single-nucleus datasets.
Topics rsn1 and rsn22 are enriched in microglia, with rsn1 also enriched in transgenic mice. C. Structure plot for microglia nuclei sorted by genotype and sex. rsn1 mostly
contributes to the AD mice, whereas rsn22 is primarily found in WT mice. D. MA plot comparison of gene weights between rsn1 and rsn22. The color of the dots represents
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Ank1 as a microRNA host gene in topic-based cellular pro-
grams would have been missed in traditional protein-coding
gene marker analysis.

Cellular programs defined using topic modeling have two
major benefits over traditional cluster-based approaches to
single-cell analysis. First, each gene can contribute more than
one topic with different weights, which is more reflective of
the pleiotropic nature of gene activity. The second substantial
benefit is that each nucleus can have a unique linear combi-
nation of topic membership, rather than force it to be only
part of a homogeneous cluster(20, 35). This approach infers
a higher and more abstract level of transcriptional activity,
represented as topics. The latent topic structure is biologi-
cally interpretable, as cells carry out their functions by engag-
ing simultaneously in multiple cellular programs related to
cell identity, activation state, cell cycle, or circadian rhythm.
Each pathway relies on different amounts of a gene’s prod-
uct, and the overall gene expression reflects the combined
requirements across all topics. This GoM representation of
cell-topic participation can be interpreted as a dimensionally-
reduced portrayal of a cell’s distinct transcriptional activities,
which is what we are truly interested in elucidating when ap-

plying single-cell techniques to study already well-surveyed
samples that have been previously characterized by bulk tech-
niques. The sooner the field moves from individual gene
marker-based analyses to cellular-program based approaches,
the more likely we are to obtain useful biological insights to
match our wants and needs.
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Materials
Mice and tissue collection. All mice were housed
following the guidelines outlined in the Guide for Care
and Use of Laboratory Animals. Approval for all
experimental procedures was obtained from UCI’s In-
stitutional Animal Care and Use Committee (IACUC),
adhering to both institutional and national guidelines.
Model-AD samples were obtained from 5xFAD/BL6 mice
(Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax,
RRID: MMRRC_034840-JAX) covered under the IACUC
protocol #AUP-21-100 and bred by the Transgenic Mouse
Facility at UCI. Left cortex and left hippocampus tissues
from 8 month old mice were snap frozen in liquid nitrogen at
UCI and stored at -80°C. ENCODE samples were obtained
from 5xFAD x CAST/EiJ (RRID: IMSR_JAX:000928)
F1 hybrids covered by IACUC protocol #IA21-1647 and
bred by Jackson Laboratories (JAX). Left cortex and left
hippocampus tissues from 8 month old mice were snap
frozen in liquid nitrogen at JAX and shipped to UCI on dry
ice.

Single-nucleus isolation and fixation. All single-nucleus
samples regardless of genotype or tissue were processed
identically. On ice, tissues from each mouse were trans-
ferred to a chilled gentleMACS C Tube (Miltenyi Biotec cat.
#130-093-237) with 2 mL Nuclei Extraction Buffer (Mil-
tenyi Biotec cat. #130-128-024) supplemented with 0.2 U/µL
RNase Inhibitor (NEB cat. #M0314L). A gentleMACS Octo
Dissociator (Miltenyi Biotec cat. #130-095-937) was used
to dissociate nuclei from whole tissues. The resulting sus-
pensions underwent rounds of filtering through mesh strain-
ers (70 µm, Miltenyi Biotec cat. #130-110-916, then 30 µm,
#130-098-458). Finally, nuclei were resuspended in PBS +
7.5% BSA (Life Technologies cat. #15260037) and 0.2 U/µl
RNase inhibitor and kept on ice. Manual counting was per-
formed using a hemocytometer and DAPI stain (Thermo cat.
#R37606). After counting, nuclei were fixed using Parse
Biosciences’ Nuclei Fixation Kit v1 (Parse Biosciences cat.
#WN100), following the manufacturer’s protocol. Between
1 and 4 million nuclei per sample were incubated in fixation
solution for 10 minutes on ice, followed by permeabilization
for 3 minutes on ice. The reaction was quenched and nuclei
were centrifuged and resuspended in 300 µL Nuclei Buffer
(Parse Biosciences cat. #WN101) and DMSO (Parse Bio-
sciences cat. #WN105). The fixed samples were assessed
under a microscope and manually counted as previously de-
scribed. Aliquots of fixed nuclei were slow-frozen in a Mr.
Frosty (Thermo cat. #5100-0001) and stored at -80°C.

Microglia single-cell isolation and fixation. Freshly pre-
pared tissues were used for microglia isolation. Perfused
right cortex and hippocampus were dissociated together us-
ing the Adult Brain dissociation kit (Miltenyi Biotec cat.
#130-107-677) and gentleMACS Octo Dissociator (Miltenyi
Biotec cat. #130-095-937) with heating. The resulting sus-
pension was filtered with a 70µm mesh strainer (Miltenyi
Biotec cat. #130-110-916). Debris were removed using the

debris removal solution from the dissociation kit. Myelin
were removed from the single-cell suspensions using nega-
tive selection with Myelin Removal Beads II (Miltenyi Biotec
cat. #130-096-733) and LS columns (Miltenyi Biotec cat.
#130-042-401). The resulting cells were enriched for mi-
croglia with magnetic labeling and positive selection using
CD11b MicroBeads (Miltenyi Biotec cat. #130-093-634)
and LS columns. Isolated microglia eluted in 1.8mL of
bead buffer (0.5% BSA in DPBS) from the LS columns
were centrifuged at 550 xg for 10 min at 4°C. Cell pel-
let with 10-15uL bead buffer was resuspended in 730µL of
Cell buffer (Parse Biosciences cat. #WF101) from the Parse
Biosciences kit (V1.3.0) with 0.5% BSA (Life Technologies
cat. #15260037), and counted (1:4 dilution) with TC20 Au-
tomated Cell Counter (Bio-rad cat. #1450102). Cells were
fixed using Parse Biosciences’ Nuclei Fixation Kit v1 (Parse
Biosciences cat. #WF102), following the manufacturer’s pro-
tocol. Between 150000 - 800000 cells per sample were in-
cubated in fixation solution for 10 minutes on ice, followed
by permeabilization for 3 minutes on ice. The reaction was
quenched and nuclei were centrifuged and resuspended in
150 µL Cell Buffer. The fixed samples were counted using
TC20 automated cell counter. DMSO (Parse Biosciences cat.
#WF105) was added to the fixed cells and cells were slow-
frozen in a Mr. Frosty (Thermo cat. #5100-0001) and stored
at -80°C.

Methods
Parse Biosciences Split-seq Experiments. The Model-
AD and ENCODE libraries were prepared in two separate
experiments using Parse Biosciences’ Evercode WT Kit v1
(cat. #EC-W01030), one kit per experiment, following the
manufacturer’s protocol. Fixed samples were thawed and
added to the Round 1 barcoding plate at 15,000 nuclei/cells
per well when possible across 48 wells. For microglia sam-
ples with low numbers, the entire sample was added. Each
tissue sample from one individual was loaded into a single
well. RNA was reverse transcribed in the fixed nuclei/cells
using oligodT and random hexamer primers and the first bar-
code was annealed. After RT, samples were pooled and ran-
domly distributed across 96 wells of the Round 2 ligation
barcoding plate for in situ barcode ligation. After Round
2, samples were pooled and randomly redistributed into 96
wells of the Round 3 ligation barcoding plate for ligation of
the third cell barcode and Illumina adapters. Finally, sam-
ples were counted with a hemocytometer and distributed into
6 subpools of 15,000 nuclei for a target of around 75,000
nominal nuclei/cells per tissue. To prepare libraries, the nu-
clei/cells in each subpool were lysed and the barcoded cDNA
was amplified. The cDNA was purified with AMPure XP
beads (Beckman Coulter cat. #A63881) and quality checked
with the Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854)
and Bioanalyzer 2100 (Agilent cat. #G2939A) High Sensi-
tivity DNA Kit (Agilent cat. #5067-4626). Subpool cDNA
(100 ng) was fragmented and Illumina P5/P7 adapters were
ligated during the last amplification, followed by size selec-
tion and quality check with the Bioanalyzer and Qubit. An
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Illumina NextSeq 2000 and P3 200 cycles kits (Illumina cat.
#20040560) were used to sequence libraries with 5% PhiX
spike-in with as paired-end, single-index reads (115/86/6/0)
to an average depth of 187 M reads per Model-AD library,
and 183 M reads per library.

Datasets. One microglia single-cell RNA-seq dataset of cor-
tex and hippocampus at 8 months on 5xFAD mouse model36
and matching wild type (C57BL/6J) were used to demon-
strate Topyfic behavior on microglia cells. We also com-
bined two single-nucleus RNA-seq datasets of cortex and
hippocampus from the 5xFAD mouse model of AD in two
different genetic backgrounds (B6J and B6CASTF1/J) from
the Model-AD and ENCODE consortiums, respectively. The
Model-AD snRNA-seq was performed in 8 month old 5xFAD
and matching wild type (C57BL/6J) mice, and ENCODE
snRNA-seq was performed in 8 month old 5xFAD/CAST and
matching WT (B6CASTF1/J) hybrid mice.

Preprocessing scRNA-seq and snRNA-seq data. Raw
fastq files were processed using Parse Bioscience’s split-
pipe software (v1.0.3p) to assign reads to single cells and
nuclei. In order to provide sample-level fastqs to the EN-
CODE portal, all data was demultiplexed using the sample-
level barcode (barcode 1) from the output of split-pipe to be
aligned and quantified with the ENCODE uniform processing
pipeline. We use STARSolo with GeneFull_Ex50pAS set-
tings and the GENCODE vM21 annotation to generate UMI
count matrices, annotated using GENCODE vM21. We re-
moved low-quality cells using a UMI cutoff of 500 based
on the knee plots and then performed Scrublet(19) doublet
detection. Cells and nuclei with <500 or >30,000 UMIs,
more than 500 genes, and a doublet score >0.2 were removed
in downstream analysis. In addition, nuclei were required
to have a mitochondrial gene expression score of <0.5%,
while cells had a more lenient threshold of <5%. Seurat17
V4 was used to perform normalization, UMAP dimension-
ality reduction, and clustering. Each dataset (Model-AD
5xFAD and B6J WT snRNA-seq, ENCODE 5xFAD/CAST
snRNA-seq, and Model-AD scRNA-seq microglia) were pre-
processed and clustered separately, with 50, 40, and 15 clus-
ters, respectively, after removal of 2 doublet-high clusters
from the Model-AD snRNA-seq dataset and 3 doublet-high
clusters from the ENCODE dataset(Fig. S2,S3).
To facilitate cell type annotation, a downsampled version of
the 1M whole cortex and hippocampus 10x atlas from 8 week
old mice available on the Allen data portal(17) was used
to transfer subtype-level annotations using “FindTransferAn-
chors” in Seurat. Each cluster was then manually annotated
using the resulting Allen Atlas labels and marker gene ex-
pression. Overall, this process identified 13 major cell types
and 34 subtypes in the snRNA-seq data, and 5 cell types
(75% of which are microglia) in the scRNA-seq data. Af-
ter defining annotations for each dataset, we extracted the
raw gene count matrices along with gene and sample in-
formation from Seurat objects and embedded all informa-
tion into the Anndata(36) file format where gene informa-
tion is ’var’ and cell information is ’obs.’ Finally, we applied

depth normalization(37) individually to each dataset to pre-
pare them for the rest of the analysis (Fig. 1A).

Selection of regulatory genes. Regulatory genes were de-
termined by microRNA-host gene correlations, annotated
transcription factors, and genes annotated with Gene On-
tology (GO) terms based on their impact on transcriptional
and chromatin regulation. GO term-derived genes were col-
lapsed into 5 categories: histone modifiers, from GO terms
related to histone acetyltransferases (GO: 0004402), his-
tone deacetylases (GO: 0004407), histone methyltransferases
(GO: 0042054), and histone demethylases (GO: 0032452);
TBP-associated factors and members of the Mediator com-
plex (TAF-MED, GO: 0016592 and GO: 0006352), chro-
matin binding (GO: 0003682), chromatin organizers (GO:
0006325 and GO: 0030527), and transcription regulators
(GO: 0140110). The final list of 2,701 expressed regula-
tory genes has 7 biotype categories including microRNA host
genes and transcription factors.

Input data to Topyfic. Topyfic accepts input in the form of
a preprocessed expression matrix embedded within the An-
ndata format(36). This format contains gene information as
’var’ and cell information as ’obs.’ Users can generate this
input format from the output of popular single-cell tools like
Scanpy(35) or Seurat(20). For topics modeling using the reg-
ulatory gene set, the expression matrix was subset for the
genes of interest, then normalized and formatted. It’s impor-
tant to note that Topyfic leaves the choice of performing nor-
malizations to the user’s discretion. However, it is strongly
recommended, especially when dealing with data originat-
ing from different technologies. Without normalization, there
is a heightened risk of detecting topics influenced by batch
differences, even when they don’t represent meaningful bio-
logical signals. To mitigate this issue, we apply depth nor-
malization37 individually to each dataset. This approach ef-
fectively implements depth normalization and variance stabi-
lization, enabling the accurate identification of recurring pat-
terns while minimizing the impact of technical variations.

Topic modeling using Latent Dirichlet Allocation
(LDA). Topic modeling is a type of statistical model that uses
unsupervised machine learning to identify groups of similar
words in each document. LDA is a generative probabilistic
Bayesian model that operates on the assumption that docu-
ments can be represented as random mixtures over latent top-
ics, where each topic is characterized by a distribution over
a set word vocabulary. In simpler terms, each document is
a mixture of topics, and each topic is a mixture of words,
where words can be repeated in different topics with different
weights. In the context of single cell/nucleus RNA-seq data,
cells correspond to documents, genes to words, and counts
are equivalent to word frequencies. We hypothesize that there
are recurring latent patterns or “topics” in count data such
as large gene expression matrices. Topics are composed of
genes with distinct weights that can together recreate under-
lying patterns of gene expression profiles for each individual
cell.
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LDA Model Training. We employed scikit-learn’s LDA im-
plementation (v1.3)(38) with options to allow users to change
default parameters including batch size and learning method
based on their data (default: learning_method=online varia-
tional Bayes method, batch_size=1000, max_iter=10). Due
to the random initialization of LDA algorithms, topic defini-
tions can vary substantially each time that the algorithm is re-
run, which hinders their interpretability. Therefore, we train
the LDA model with several distinct random seeds (default
100 times) to capture all possible topics. After training all
LDA models, we built our gene-topic weight matrix using all
the obtained models. Even though learning each LDA model
is not overly time-consuming, learning it 100 times can be
time-intensive and will increase by increasing the number of
input data(cells/nuclei). To reduce run time, we have added
another feature to train each LDA model separately and then
combine all of them to make the final LDA train object.

TopModel Construction. We assume topics that are inde-
pendent of the random seeds should have a similar gene
weight profile. Leveraging this hypothesis, we employ the
Leiden algorithm to cluster all topics with similar gene
weight profiles. In cases where batch effects may be present,
we incorporate Harmony(39) for batch correction, ensuring
that the topics remain consistent across different datasets.
Once the clusters are defined, Topyfic calculates the topic
centroid (mean of gene weights) for each cluster to create
a new gene weight matrix. Then it will trim the matrix by
calculating 90% of the cumulative sum of gene weight and
reassign the rest to a pseudocount (1 divided by the total num-
ber of topics), creating a new reproducible LDA model (Top-
Model). To enhance the quality of topics, we implemented
a filtering step that discards small clusters of topics based on
cell-topic participation, with the default threshold set at less
than 1% of cells. If any topic is eliminated in this step, Topy-
fic will redo the trimming and reassign the rest to the new
pseudocount. This filtering step aids in eliminating topics
that may have emerged due to random seed fluctuations, fo-
cusing our analysis on the more stable and biologically mean-
ingful topics.

Annotating topics. A topic is essentially a vector of gene
weights denoting their relative contribution to that specific
topic. It is important to note that a single gene can appear in
multiple topics with different weights. Topyfic offers differ-
ent functional enrichment analyses for each topic, enhancing
its utility and our understanding of each topic. These analyses
encompass Gene Ontology (GO) analysis, Gene Set Enrich-
ment Analysis (GSEA)(40), and pathway analysis using the
REACTOME database(41). Furthermore, Topyfic supports
the comparison of the two topics. This is achieved by trans-
forming the data onto two scales: M (log ratio) and A (mean
average). These scales facilitate the calculation of a modi-
fied z-score based on the M value, allowing for meaningful
comparisons between topics in terms of their gene weights.

Analysis object. The Analysis object is a pivotal compo-
nent in the post-processing phase of Topyfic, aiding in bio-

logical interpretation of the topics and data following train-
ing of the TopModel. After successfully training the Top-
Model, analysis of the TopModel itself commences. This
analysis includes the calculation of ’cell-topic participation,’
which quantifies the extent to which each topic contributes to
each cell. In essence, it represents probability distributions
for each row, ensuring that the sum of topic participation for
each cell equals one. To facilitate a comprehensive under-
standing of the topics and their relationships, Topyfic offers
several visualization tools.
Using grade-of-membership models helps us estimate mem-
bership proportions for each cell/nucleus in each topic, visu-
alized as a structure plot(42, 43). The structure plot displays
the estimated membership proportions of each cell/nucleus as
a stacked bar plot, with different colors representing different
reproducible topics. To enhance the visualization of inferred
cellular programs from the data, cells are sorted within se-
lected traits in a given order. Within each trait group, cells
are further ordered based on their similarity in estimated
membership proportions, employing Ward’s linkage(44). A
pie chart summarizes the structure plot, providing a rep-
resentation of the overall contribution of each topic of all
the cells/nuclei in a trait group. A topic-trait relationship
heatmap visualizes the Spearman correlation coefficients be-
tween each trait and topic as a heatmap. These visualizations
serve as valuable aids in interpreting the topics and their as-
sociations with other relevant traits or characteristics.

Comparing Topics. An advantage of employing LDA to
discover topics lies in the representation of gene weights
as probability distributions within each topic, ensuring that
the sum of gene weights in any topic equals one. Lever-
aging this property, Topyfic offers a valuable feature for
comparing topics based on their gene membership profiles.
To facilitate this comparison, Topyfic normalizes the gene
weights and assesses the similarity between any pair of top-
ics in the gene membership space. This similarity evalua-
tion can be performed using various methods, including Pear-
son correlation, Spearman correlation, cosine similarity, and
information-theoretic metrics like the Jensen–Shannon diver-
gence. Once these comparisons are completed, the results
can be visualized as a graph or heatmap through Topyfic.
This visualization allows for a clearer understanding of the
relationships between different topics based on their gene
memberships.

LDA parameter settings. In addition to determining the fi-
nal number of topics, other parameters may require tuning
based on the input data. We suggest using ‘online’ as a learn-
ing method, which uses an online variational Bayes method.
This method updates the gene weight in each topic during
each EM update using a mini-batch of training data. We can
also tune learning_decay which controls learning rate in the
online learning method. Besides these, other possible search
parameters could be batch_size (number of cells to use in
each EM iteration; default=1000) and max_iter (the maxi-
mum number of passes over the training data, aka epochs;
default=10). Given enough computing resources, it might be
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worthwhile to experiment with these parameters.

Pseudobulk calculation. A pseudobulk sample is formed
by aggregating the expression values that pass QC from
groups of nuclei originating from the same individual, which
represents the experimental unit of replication.

Principal component analysis (PCA). Principal compo-
nent analysis was performed through scikit-learn on the pseu-
dobulk matrix, where 27 components explained 95% of the
variance in the single nucleus data.

Topyfic analysis of single-nucleus RNA-seq data. The
normalized gene-count matrix was divided based on sam-
ples with and without the 5xFAD transgene for training the
TopModel through Topyfic. Initial TopModel training was
performed on the first replicate of the 5xFAD and WT sam-
ples separately, employing default parameters except mini-
mum cell participation which was 0.5% of the total number
of nuclei (120.7 for the 5xFAD dataset and 142.725 for the
WT dataset) using different numbers of topics (K) ranging
from 5 until 50. K=15 was chosen for further analysis. Sub-
sequently, Topyfic was used to combine TopModels and re-
move topics with cell participation lower than 0.5% of the
total number of nuclei in both datasets (321.11) to obtain the
final reproducible topics. To demonstrate that the TopModel
learned meaningful topics that could be used to analyze other
related datasets, we applied the trained TopModel to the sec-
ond replicate of the single-nucleus data.

Topyfic analysis of single-cell RNA-seq data. A pro-
cessed gene-count matrix containing only microglia cells was
passed as input to Topyfic. The TopModel was trained with
all default parameters, except for the minimum cell partici-
pation which was set to 0.5% of the total number of nuclei
(27.73) across different numbers of topics (K).
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Fig. S1. Impact of various data and Topyfic parameters on the number of topics(K). A. The perplexity score is based on the number of starting topics (K) on the separate
runs, and the combined models. Choosing K=15 for the individual runs to have lower the perplexity score. B. Influence of the number of nuclei/cells on the recovered topics
(K). Higher number of nuclei/cells results in a greater number of topics (K). C. Impact of increasing minimum cell-topic participation on the removal of smaller topics, leading
to a reduction in the number of topics (K). D. The effect of increasing resolution on generating more clusters, subsequently increasing the number of topics (K).
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Fig. S3. Overview of ENCODE dataset. A. Breakdown of nuclei, cell type, subtype, genotype, sex, and tissue across 43 clusters. B. Expression of marker genes
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