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Abstract 

Accurate transcription start site (TSS) annotations are essential for understanding 

transcriptional regulation and its role in human disease. Gene collections such as GENCODE 

contain annotations for tens of thousands of TSSs, but not all of these annotations are 

experimentally validated, nor do they contain information on cell type-specific usage. Therefore, 

we sought to generate a collection of experimentally validated TSSs by integrating RNA 

Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data 

from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand 

representative RAMPAGE peaks. These peaks were primarily proximal to GENCODE-

annotated TSSs and were concordant with other transcription assays. Because RAMPAGE 

uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the 

genomic positions of the 3' ends of read mates. Using this paired-end information, we classified 

the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS 

annotations for 20% of GENCODE genes. We also found that these updated TSS annotations 

were supported by epigenomic and other transcriptomic datasets. To demonstrate the utility of 

this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide 

association studies (GWAS) catalog and identified new candidate GWAS genes. Overall, our 

work demonstrates the importance of integrating experimental data to further refine TSS 

annotations and provides a valuable resource for the biological community. 
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Introduction 

Accurate maps of genes and their transcription start sites (TSSs) are essential for studying gene 

regulation and determining the impact of genetic variation. While gene and transcript 

annotations have improved substantially over the years, benefiting from advances in 

experimental and computational technologies, accurate, cell type-specific annotations are far 

from complete. Efforts such as the GENCODE project (Frankish et al. 2019) have generated 

detailed annotations for over 60 thousand genes and 100 thousand transcripts across the 

human genome. These widely used annotations combine transcriptomic, proteomic, and 

homology evidence through manual curation and automated computational pipelines. However, 

these annotations are built in a cell type-agnostic manner; they represent the collective 

transcriptomic landscape across thousands of unique cell and tissue types. Therefore, it is 

difficult to know which transcripts are actively transcribed in a particular cell or tissue type and, 

by extension, which regulatory elements and genetic variants may impact gene expression.  

 

While public RNA-seq data are accumulating across a wide array of tissues and cells types, 

many of which are from coordinated efforts such as the Genotype-Tissue Expression (GTEx) 

(GTEx Consortium 2020) and Encyclopedia of DNA Elements (ENCODE) (The ENCODE 

Project Consortium et al. 2020) projects, these experiments are not optimal for annotating 

specific transcripts and their start sites. Most RNA-seq protocols perform short-read 

sequencing, which can accurately quantify gene expression levels but cannot delineate 

transcript isoforms fully nor precisely map the 5' ends of transcripts. Therefore, assays that 

target and preserve 5' ends, such as the cap analysis gene expression (CAGE) assay (Kodzius 

et al. 2006), are preferred for TSS identification. The FANTOM consortium generated a TSS 

catalog across the human genome by integrating thousands of CAGE experiments (The 

FANTOM Consortium and the RIKEN PMI and CLST (DGT) 2014). However, CAGE uses short, 

single-end reads, which have low mappability and can not connect TSSs to their downstream 

transcripts. To overcome these limitations, Gingeras and colleagues developed the RNA 

Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) assay 

(Batut et al. 2013), which captures the 5' end of capped RNAs using paired-end reads to enable 

more accurate genomic mapping and transcript characterization. The Gingeras lab generated 

both RAMPAGE and RNA-seq data for more than one-hundred human samples during the 

ENCODE Project (The ENCODE Project Consortium et al. 2020). 
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Here, we integrated 115 high-quality ENCODE RAMPAGE experiments to identify 52,546 

representative RAMPAGE peaks (rPeaks), a curated collection of TSSs and their activities 

across the 115 human samples. These rPeaks are supported by other transcription assays 

including CAGE, long-read RNA-seq using the PacBio platform, and high-resolution nuclear run-

on of capped transcripts (GRO-cap) (Core et al. 2014). Using paired-end RAMPAGE reads, we 

linked the majority of rPeaks to annotated genes and identified TSSs of unannotated spliced 

transcripts. These verified rPeaks were more enriched for transcriptomic and epigenomic 

features than GENCODE TSSs for the same genes not supported by RAMPAGE. Finally, we 

used this collection of rPeaks to annotate human variants associated with genome-wide 

association studies (GWAS) and identify novel phenotype-associated genes. Overall, our TSS 

collection complements existing gene annotations and demonstrates the utility of cell type-

specific TSS annotations in integrative analyses. 

 

Results 

Curation of 52,546 representative RAMPAGE peaks 

We curated 115 high-quality RAMPAGE experiments (Supplemental Table S1A) from 

ENCODE to generate our collection of representative RAMPAGE peaks (rPeaks) (Fig. 1A). 

These RAMPAGE experiments spanned 87 tissues and 28 cell types from a variety of biological 

contexts. We called peaks using the 5’ ends of RAMPAGE reads in individual experiments as 

previously described (Zhang et al. 2019), identifying three components for each peak: (1) a full 

peak; (2) a high-density region in the peak that accounts for 80% of the peak's total RAMPAGE 

signal; and (3) a summit, which is the genomic position with the highest signal. Given that the 

RAMPAGE assay enriched for reads at the 5' ends of transcripts, we filtered out the small 

subset of RAMPAGE peaks that had higher RNA-seq signals than RAMPAGE signals in the 

matched biosample, which may be due to fragmentation, degradation, and cytosolic recapping 

of the transcripts (Trotman and Schoenberg 2019) (see Methods, Supplemental Fig. S1A), 

retaining about ten thousand peaks per experiment (Supplemental Table S1A). We then 

clustered overlapping peaks across the 115 experiments for two genomic strands separately 

and selected a representative peak (rPeak) for each cluster with the highest Reads Per 

Kilobase, per Million mapped reads (RPKM, Fig. 1A). Additional filtering was performed to 

remove low signal, single-experiment rPeaks which were likely false positives; in total, we 

arrived at 52,546 rPeaks (Supplemental Table S1B). The full rPeaks and their high-density 

regions occupy 0.23% and 0.09% of the human genome, having median widths of 121 and 43 

nucleotides (nts), respectively (Supplemental Fig. S1B, C). 
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The majority (59%) of rPeaks either overlapped or were proximal to (± 500 bp but did not 

overlap) a GENCODE-annotated TSS (GENCODE 31 basic TSSs; Fig. 1B). As an assessment 

for the extent of divergent transcription at TSSs, we detected an rPeak upstream on the 

opposite strand within 2 kb for the 6,666 TSS-overlapping rPeaks (31%); this percentage is 

comparable to the FANTOM5 consortium's CAGE peak collection for which 8,601 (34%) TSS-

overlapping peaks have a peak upstream on the opposite strand within 2 kb. The remaining 

rPeaks overlapped exonic, intronic, or intergenic regions (14%, 18%, and 9% of rPeaks, 

respectively). We used these genomic contexts (TSS, TSS-proximal, exon, intron, and 

intergenic) throughout our analyses. As expected, RAMPAGE rPeaks were highly enriched for 

annotated TSSs and depleted in intergenic regions compared to the genomic footprints of these 

contexts (Chi-square test, p  < 1 × 10−300, Fig. 1C). Additionally, TSS, TSS-proximal, exonic, and 

intronic rPeaks had higher strand concordance than intergenic rPeaks, meaning they were more 

likely to fall on the same strand as their overlapping or closest gene (Fig. 1D). This finding 

suggests that intergenic rPeaks could result from mis-annotated or novel TSSs or from 

transcription at regulatory elements such as enhancer RNAs (eRNAs).  

 

Next, we analyzed the ability of each rPeak to accurately represent their underlying clusters. 

When we analyzed the range of biosample activities of the RAMPAGE peak clusters, we 

observed a bimodal distribution (Supplemental Fig. S1D, Supplemental Table S1B), 

indicating that some rPeaks represent peaks from many RAMPAGE experiments, while others 

represent only a few, reflecting varying levels of cell and tissue type specificity of the TSS 

usage. The rPeaks in different genomic contexts differ greatly in this regard. TSS rPeaks 

represent peaks from 26 experiments on average, much higher than other rPeaks (pairwise 

Fisher's exact test, p  < 1 × 10−300, Supplemental Fig. S1E), indicating that annotated TSSs 

tend to be active in multiple cell and tissue types. For the vast majority of rPeaks, their summits 

were at nearly identical positions to the RAMPAGE peaks in individual experiments that they 

represented (we excluded the peak that was chosen as the rPeak for this analysis), with a 

difference in median of 0 bp across experiments (Fig. 1E). We note that although the 

RAMPAGE technique is of single-bp resolution and annotated TSSs are assigned single-bp 

genomic locations, RAMPAGE peaks reflect the firing patterns of RNA polymerases, which can 

vary across the genome. Polymerase firing originates predominantly from one genomic position 

at some loci but is more dispersed at other loci, corresponding to narrow, broad, and dispersed 
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TSS shapes (Carninci et al. 2006; Fan et al. 2021).  Although the median width of the high-

density region of the rPeaks is 43 nts, the high-density region of 3,984 rPeaks is a single bp. 

Thus, RAMPAGE is  capable of determining the resolution of TSSs down to a single bp. We 

observed more variability in the boundaries of the high-density regions and full RAMPAGE 

peaks, with a difference in median of 8 and 18 nts, respectively, which is still relatively small on 

a genome-wide scale. As an illustrative example, the rPeak (ZH38T0001231) that overlapped a 

TSS of the PPIE gene represented RAMPAGE peaks from 114 experiments precisely at their 

summits and high-density regions (Fig. 1F, Supplemental Table S1C).  

 

To assess the biological spectrum of rPeak activity, we performed dimensionality reduction with 

UMAP for all tissue samples (N = 87), using RAMPAGE signal profiles across the rPeaks in 

these samples (Fig. 1G). Similar tissues were generally clustered together, e.g., brain, heart 

and leg muscle, and gastrointestinal tissues, respectively. Some fetal tissues were clustered 

with their corresponding adult tissues, including heart, liver, and lung. However, fetal thyroid and 

stomach tissues clustered exclusively with other fetal tissue samples, suggesting that these fetal 

samples share developmental transcriptional patterns at the surveyed life stages. We observed 

similar patterns using all 115 biosamples, albeit with tissues clustering separately from primary 

cells and cell lines (Supplemental Fig. S1F). Overall, these results indicate that our RAMPAGE 

rPeaks are a unified set of transcriptional sites that enables systematic investigations into the 

transcriptional landscape across multiple biosamples.  

 

RAMPAGE rPeaks are concordant with other transcription start site annotations 

To evaluate the accuracy and comprehensiveness of our RAMPAGE rPeaks collection, we 

compared it with other collections of transcription start site annotations. The largest and most 

biologically diverse of these collections is the atlas of CAGE peaks generated by the FANTOM5 

consortium, which comprises 209,911 peaks annotated across 1,816 experiments (FANTOM 

Consortium and the RIKEN PMI and CLST (DGT) et al. 2014; Abugessaisa et al. 2017). 

Approximately two-thirds of our rPeaks overlapped a CAGE peak, while only one-third of the 

CAGE peaks overlapped an rPeak (Fig. 2A). Stratified by genomic context, the CAGE-

overlapping rPeaks were more likely to be at GENCODE TSSs or TSS-proximal loci and less 

likely to be at exonic, intergenic, or intronic loci (Chi-square test, p < 1.0 × 10−300, Fig. 2B). 

Additionally, we intersected our rPeaks with FANTOM enhancers and only 4% of our rPeaks 

(N=2,195) and 3% FANTOM enhancers (N=1,977) overlapped. These two results suggest that 
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the RAMPAGE assay preferentially identifies TSSs of genes rather than transcription at 

regulatory elements.  

 

We also observed that while the majority (65%) of RAMPAGE rPeaks overlapped one or no 

CAGE peaks, some rPeaks overlapped multiple CAGE peaks. We investigated such cases to 

determine if we were missing alternative TSSs due to our wider peak calls and found that these 

were generally sites of dispersed transcription (Supplemental Fig. S2). Using RAMPAGE data, 

we previously demonstrated that TSS shape is linked with cell type-specific activity since narrow 

TSSs are more likely to be cell type-specific compared to broad and disperse TSSs, which are 

more ubiquitously expressed (Fan et al. 2021). Indeed, RAMPAGE rPeaks that overlap multiple 

CAGE peaks were 2.2 times more likely to overlap ubiquitously active promoters compared to 

RAMPAGE rPeaks that only overlapped a single CAGE peak (Fisher's exact test, p  < 1.0 × 

10−300). The structure of our rPeaks—full peak width, high density region, and summit—allows 

us to detect these types of dispersed transcription events.  

 

Though a majority of TSS and TSS-proximal rPeaks were shared between RAMPAGE and 

CAGE, we identified sets of genes with TSSs that were exclusively proximal to CAGE peaks 

(CAGE-only genes, Supplemental Table S2A) or were exclusively proximal to RAMPAGE 

rPeaks (RAMPAGE-only genes, Supplemental Table S2B). Gene Ontology analysis revealed 

that the 6,932 CAGE-only genes were enriched in terms such as T cell receptor complex and 

photoreceptor disc membrane (Fig. 2C, Supplemental Table S2C). Enrichment in these terms 

is not surprising as the corresponding biosamples—T cells and eye tissues—were assayed by 

CAGE but not RAMPAGE. Additional enrichment for neuronal terms such as integral 

components of postsynaptic density membranes was unexpected as we integrated RAMPAGE 

data from seven fetal brain samples and in vitro differentiated neurons. Alternatively, the 1,573 

RAMPAGE-only genes were primarily enriched for two terms, immunoglobulin production and 

keratinization (Fig. 2C, Supplemental Table S2D), due to an abundance of immunoglobulin 

kappa (IGK) genes and keratin-associated protein (KRTAP) genes, respectively. While we 

observed genes from these families in both the RAMPAGE-only and CAGE-only gene sets, the 

sequences flanking the TSSs of RAMPAGE-only IGK and KRTAP genes shared higher 

sequence similarity than the corresponding CAGE-only genes (Wilcoxon tests, p = 7.1 × 10−7 

and 4.7 × 10−5, respectively, Fig. 2D, Supplemental Fig. S3A). We hypothesize that the 101 nt, 
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paired-end RAMPAGE reads can uniquely map to genomic regions sharing higher sequence 

similarity better than the 36 nt, single-end CAGE reads, allowing us to identify rPeaks in more 

paralogs of these two gene families. In conclusion, the primary differences in the gene coverage 

by RAMPAGE rPeaks and CAGE peaks largely reflect differences in their biosample collections 

and assay read length. 

 

To avoid coverage differences due to biosample composition, we directly compared RAMPAGE 

rPeaks and CAGE peaks active in K562 and GM12878 cell lines—biosamples used in both 

peak collections—along with GRO-cap (Core et al. 2014) and PacBio long-read RNA-seq data 

(Wyman et al.) in the respective cell lines. Generally, the four sets of TSS annotations were 

highly concordant, with the majority of RAMPAGE rPeaks, CAGE peaks, and PacBio 5' ends 

overlapping one another and containing high GRO-cap signals (Supplemental Fig. S3B). In 

total, 98% of K562 and GM12878 rPeaks were substantiated by overlaps with at least one other 

transcriptome annotation, and a majority of the rPeaks—65% in K562 and 74% in GM12878—

was supported by all of the other assays (Fig. 2E and Supplemental Fig. S3C). These 

supported rPeaks had higher RAMPAGE signals (Pairwise Wilcoxon test, p  < 1.0 × 10−300, Fig. 

2F, Supplemental Fig. S3D) and were more likely to overlap TSSs (Chi-square test, p  = 2.5 × 

10−259, Fig. 2G, Supplemental Fig. S3E) than rPeaks supported by fewer or no other assays. 

When we analyzed the CAGE, PacBio, and GRO-cap signals at rPeaks in K562 and GM12878 

cells, we found that signal was highly enriched directly at the rPeak summits, demonstrating that 

our TSS annotations were supported by these other assays at base-pair resolution 

(Supplemental Fig. S3F-K). We also analyzed the number of genes with TSSs supported by 

RAMPAGE, CAGE or PacBio data, and observed that RAMPAGE rPeaks identified an average 

of 17% fewer genes than CAGE and PacBio (Supplemental Fig. S3L, M). On the other hand, 

96% of RAMPAGE genes were supported by another assay compared to 90% of CAGE genes 

and 88% of PacBio genes. Thus, our rPeak approach slightly compromises recall for better 

precision.  

 

Our pairwise comparison between the four transcription assays (Supplemental Fig. S3B) 

indicates that the majority of RAMPAGE, CAGE, and PacBio annotations overlapped one 

another (55-88%) and were supported by high GRO-cap signals (80-91%). However, when we 

analyzed GRO-cap peaks, only a small percentage of the over 100k peaks overlapped the other 
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assays. This is likely either due to the ability of GRO-cap to detect transcription of unstable 

transcripts and/or more lenient calling of GRO-cap peaks.    

 

Stratified by genomic context, TSS rPeaks had the highest levels of GRO-cap signal and 

overlapped the greatest number of PacBio 5´-ends, followed by TSS-proximal, intronic and 

intergenic rPeaks (Supplemental Fig. S3N-P). In contrast, exonic rPeaks consistently had the 

lowest levels of GRO-cap signal, and though they overlapped a moderate number of PacBio 5´-

ends (Supplemental Fig. S3O), these PacBio reads were significantly shorter than those 

overlapping other rPeak classes (pairwise Wilcoxon test with FDR correction, p < 1.0 × 10−16 , 

Supplemental Fig. S3P). These results suggest that many of the exonic rPeaks likely are not 

TSSs and may arise from mRNA recapping (Trotman and Schoenberg 2019). 

 

To evaluate the ability of the RAMPAGE assay to detect low-abundance and unstable 

transcripts, we compared our rPeak annotations to TSSs classified by stability through the 

integration of GRO-cap and CAGE data (Core et al. 2014). In K562 and GM12878 64% and 

57%, respectively, of stable TSSs overlapped RAMPAGE rPeaks annotated in those cell types 

(Supplemental Fig. S3Q). In contrast, less than 1% of unstable TSSs overlapped rPeaks, 

demonstrating that the RAMPAGE assay can only detect TSSs of stable transcripts. This was 

further highlighted when we compared the overlap of our rPeaks collection to enhancers 

identified by the NET-CAGE assay, which can identify transcription from unstable transcripts 

(Hirabayashi et al. 2019). Only 1.5% of NET-CAGE specific enhancers (N=315) overlapped an 

rPeak compared to the aforementioned 3% of FANTOM CAGE enhancers (Fisher’s exact test, p 

= 2.0 × 10−33). Therefore, we conclude that our RAMPAGE rPeak collection preferentially 

contains TSSs for stable, gene-associated transcripts. 

 

Overall, only 2% of K562 and GM12878 RAMPAGE rPeaks were not supported by one of the 

other assays (N = 301 and 212, respectively). These peaks had the lowest RAMPAGE signals 

and were more likely to overlap exons, introns, and intergenic regions (Fig. 2F-G, 

Supplemental Fig. S3D-E). These weaker transcription sites are not as reproducible across 

assays or may be false positives. Thus, our set of RAMPAGE rPeaks are highly concordant with 

other transcriptome annotations and likely represent a conservative set of transcription start 

sites. 
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Three-quarters of RAMPAGE rPeaks are assigned to genes via spliced transcripts 

One advantage of the RAMPAGE assay is that it produces paired-end reads, which not only 

result in more accurately mapped fragments but also have the ability to assign rPeaks to genes. 

rPeaks are derived from the 5' ends of RAMPAGE read pairs, and by analyzing the genomic 

positions of 3' ends of the read pairs, we can attempt to link rPeaks to downstream transcripts 

and consequently assign rPeaks to genes. Such a process could go down one of two general 

paths (Fig. 3A). If the generated transcript is spliced (e.g., mRNAs and lncRNAs), the 3' end of 

the read pair would map to an exon that is thousands of base pairs downstream of the rPeak, 

and we can assign the rPeak to the gene that the exon belongs to. However, if the generated 

transcript is unspliced (e.g. pre-mRNAs, single-exon transcripts, small RNAs, and most eRNAs), 

the 3' end will map less than 1 kilobases (kb) downstream (the maximum selected fragment size 

for the RAMPAGE assay; median = 335 nt) and we cannot confidently assign the rPeak to a 

specific gene.  

 

To determine the portions of RAMPAGE reads derived from spliced and unspliced transcripts, 

we calculated the distance between the 5' and 3' ends of the read pairs that support an rPeak 

(i.e., the 5' end of the read pair overlaps an rPeak). For TSS-overlapping rPeaks, we observed a 

bimodal distribution, with 83% of reads from spliced transcripts (distance > 1 kb) and 17% from 

unspliced transcripts (distance ≤ 1 kb, Fig. 3B). For other rPeak classes, we also observed 

substantial percentages of reads deriving from spliced transcripts (43-68%), suggesting that 

these rPeaks may correspond to TSSs for mis-annotated transcripts, novel isoforms, or novel 

genes. These results indicated that we can use RAMPAGE read pairs from spliced transcripts to 

assign rPeaks to genes. 

 

We developed a computational pipeline to systematically assign rPeaks to genes 

(Supplemental Fig. S4A). Because of the aforementioned low GRO-cap signal at exonic 

rPeaks, we excluded all exonic rPeaks that did not overlap the first exon of an annotated 

transcript (N = 6,709) from this analysis as they likely capture recapping (Trotman and 

Schoenberg 2019) or degradation events rather than sites of transcription. We further discarded 

four rPeaks whose supporting reads mapped more than 500 kb away. We classified the 

remaining 45,833 rPeaks into five general categories depending on whether an rPeak overlaps 
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a GENCODE-annotated TSS and whether its supporting reads overlapped a GENCODE-

annotated exon, with the most prominent scenarios summarized as follows (Fig. 3C) and with 

details provided in Supplemental Table S3A. First, if an rPeak overlaps a GENCODE-

annotated TSS and its supporting reads overlap a downstream exon of the same gene, the 

rPeak is classified as verified GENCODE TSS. Second, if an rPeak does not overlap a 

GENCODE-annotated TSS but its supporting reads overlap a GENCODE-annotated exon, the 

rPeak is classified as verified unannotated TSS. Third, if an rPeak overlaps a GENCODE-

annotated TSS and its supporting reads overlap the first exon of the gene, and if the gene has 

only one exon or its first exon is longer than 500 nts, then the rPeak is classified as candidate 

GENCODE TSS. Fourth, if an rPeak’s supporting reads map to more than 1 kb downstream 

from the rPeak and do not overlap a GENCODE-annotated exon, the rPeak is deemed to be the 

TSS of an unannotated transcript. Fifth, if an rPeak’s supporting reads are within 1 kb of the 

rPeak and the rPeak is not a candidate GENCODE TSS (third category above), then it is 

deemed to originate from local (i.e., unspliced) transcription. Using our pipeline, we assigned 

84% of rPeaks to genes (the first three categories, Fig. 3D), which is 4,641 more genes and 

12,466 more transcripts than simply using overlaps (Fig. 3E). In total, we curated 19,821 

verified GENCODE TSSs, 17,447 verified unannotated TSSs, and 1,088 candidate GENCODE 

TSSs for 22,801 genes and 4,129 TSSs for unannotated transcripts (Supplemental Table 

S3A).  

 

The vast majority of TSS-overlapping rPeaks (19,821 of 21,278, 93%) are verified GENCODE 

TSSs, indicating that our approach is highly accurate (Fig. 3F, Supplemental Table S3B). 

These verified GENCODE TSSs amount to 43% of all rPeaks. The next largest category of 

rPeaks is verified unannotated TSS (38%, N = 17,447, Supplemental Table S3C), and these 

rPeaks are potentially novel TSSs of spliced GENCODE-annotated genes revealed by our 

collection of RAMPAGE data. Three examples from K562 cells are highlighted (Supplemental 

Fig. S4B-D): exonic rPeak ZH38T0014149, a verified TSS of ING1, (Supplemental Fig. S4B); 

intronic rPeak ZH38T0050003, a verified TSS of GALNT12 (Supplemental Fig. S4C); and 

intergenic rPeak ZH38T0049993, a verified TSS of NANS (Supplemental Fig. S4D). These 

three verified TSSs and their linked transcripts were also supported by PacBio reads in K562 

cells.  

 

To determine if the verified unannotated TSSs were from minor or cell type-specific isoforms, 

we compared the activity levels for the TSSs of 6,161 genes that had at least one verified 
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GENCODE TSS and one verified unannotated TSS. We found that most verified TSSs fell into 

three general classes (Supplemental Fig. S5A): 1) ubiquitously expressed TSSs that belong to 

ubiquitously expressed genes; 2) cell type-specific TSSs that belong to ubiquitously expressed 

genes (i.e., TSSs of tissue-specific isoforms); and 3) cell type-specific TSSs that belong to cell 

type-specific genes. Generally, verified GENCODE TSSs fell into the first and third classes 

(Supplemental Fig. S5B) while verified unannotated TSSs fell into the second and third classes 

(Supplemental Fig. S5C). Furthermore, verified GENCODE TSSs were more likely to 

correspond to major isoforms compared to verified unannotated TSSs (Wilcoxon test, p < 1.0 × 

10−300, Supplemental Fig. S5D). When we analyzed the expression profiles of these verified 

annotated TSSs, we found that they had enriched expression in male reproductive tissues (e.g., 

testis and prostate, Supplemental Table S3D) supporting previous findings that alternative 

transcription is prevalent in these tissues (Naro et al. 2021). 

 

The candidate GENCODE TSS category of rPeaks (N = 452) constitutes 88% of the TSS-

overlapping rPeaks that were not supported by reads from spliced transcripts (N = 511). The 

GENCODE genes that overlap these rPeaks either have only one exon or have a long (> 500 

nts) first exon (Supplemental Table S3E). We observed a similar pattern for TSS-proximal and 

exonic rPeaks not supported by reads from spliced transcripts, though at lower percentages. 

These rPeaks are most likely the TSSs of the overlapping genes, although our paired-end 

mapping approach is not able to make the assignment definitively; thus, we assigned them the 

candidate designation. Of the 8,298 TSS-proximal and 547 exonic rPeaks that we classified as 

either candidate GENCODE or verified unannotated TSSs, 1,627 overlap the coding DNA 

sequence (CDS) of an annotated GENCODE gene. These alternative TSSs could potentially 

affect the open reading frame (ORF) of the annotated gene resulting in a different translated 

protein. 

 

The unannotated transcript category includes 4,129 rPeaks (9% of rPeaks), which are likely 

TSSs of unannotated spliced transcripts. The rPeaks themselves are primarily intergenic, 

intronic, or antisense TSS-proximal with respect to GENCODE-annotated genes 

(Supplemental Table S3F). Although this category of rPeaks shows similar levels of 

evolutionary conservation to the local transcription category of rPeaks, the former category is 

active in more biosamples and more likely to overlap PacBio TSSs (Supplemental Fig. S5E-H, 

Supplemental Table S4). Additionally, the PacBio reads that overlapped the verified 
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unannotated transcript rPeaks had a similar length distribution to the PacBio reads that 

overlapped rPeaks in the verified GENCODE TSS category, suggesting that the verified 

unannotated transcript rPeaks may correspond to lncRNAs missed by GENCODE (Fig S4I,J). 

To test this hypothesis, we intersected these rPeaks with lncRNA TSSs curated by the lncBook 

database (Ma et al. 2019) and found that 30% of our verified unannotated transcript rPeaks 

overlapped the lncBook lncRNA TSSs, a significant enrichment over the local transcription 

rPeaks and random genomic regions (7% and <1% overlap, respectively, Fisher's exact test, p 

< 8.8 × 10−148, Supplemental Table S3F). Using overlapping PacBio reads, we also scanned 

for potential of open reading frames (ORFs) in the resulting transcripts and found that the 

unannotated transcripts had fewer computationally discovered ORFs compared to GENCODE 

annotated transcripts (Supplemental Fig. S4K,L, Pairwise wilcoxon test with FDR correction, p 

< 2.6 × 10−77). These results suggest that many of our verified unannotated transcript rPeaks 

are likely lncRNAs and further expands the growing list of lncRNAs in the human genome. 

 

We built our catalog of RAMPAGE rPeak TSSs using GENCODE V31 basic annotations. 

Because GENCODE releases new versions quarterly, we evaluated how our catalog compared 

to six different GENCODE builds. We ran our pipeline using GENCODE V24, V31 and V38, 

evaluating both basic and comprehensive annotations (Supplemental Fig. S5M, Supplemental 

Table S3G). As expected, more rPeaks were classified as verified GENCODE TSSs when 

using the newer, more comprehensive GENCODE builds. For example, 18k rPeaks were 

classified as verified GENCODE TSSs using GENCODEv24 basic annotations compared to 25k 

rPeaks with the GENCODE V38 comprehensive annotations. Nevertheless, even with the 

GENCODE V38 comprehensive annotations, we still identified 13k novel TSSs for annotated 

GENCODE transcripts and 3.7k TSSs for novel transcripts, demonstrating that our rPeak 

catalog still identifies novel transcriptional events. 

 

RAMPAGE-verified TSSs are enriched for regulatory signatures  

We compared our RAMPAGE-verified TSS annotations with GENCODE-annotated TSSs for 

enrichment in functional, epigenomic, and additional transcriptomic annotations. For these 

analyses, we only considered genes with both a RAMPAGE-verified unannotated TSS and a 

GENCODE TSS that did not overlap each other (4,751 genes) and used a uniform 100 bp 

region centered at an rPeak summit or GENCODE TSS to control for gene expression and 

provide an unbiased comparison. 
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RAMPAGE-verified unannotated TSSs were more likely to overlap ENCODE candidate cis-

regulatory elements (The ENCODE Project Consortium et al. 2020) (cCREs, 1.3 fold 

enrichment, Fisher's exact test, p = 1.7 × 10−125) and GTEx expression quantitative trait loci 

(GTEx Consortium 2017) (eQTLs, 1.2 fold enrichment, Fisher's exact test, p = 2.8 × 10−6), 

compared to matched GENOCDE TSSs (Fig. 4A). When we restricted our analysis to 

RAMPAGE-verified unannotated TSSs active in K562 and their matched GENCODE TSSs (961 

genes), we observed that the verified TSSs were more likely to overlap K562 cCREs (1.8 fold 

enrichment, Fisher's exact test, p = 8.7 × 10−92, Fig. 4B) and peaks from the Survey of 

Regulatory Elements (SuRE) assay, a massively parallel reporter assay testing promoter activity 

(van Arensbergen et al. 2017) (1.9 fold enrichment, Fisher's exact tests, p = 1.1 x 10−79, Fig. 

4A). The K562 RAMPAGE-verified unannotated TSSs also had higher H3K4me3 and H3K27ac 

ChIP-seq signals, which had the canonical asymmetric pattern corresponding to transcriptional 

direction, chromatin accessibility, and Pol II ChIP-seq signals compared to the matched 

GENCODE TSSs (Fig. 4C).  

 

We also compared the verified unannotated TSSs with the K562 and GM12878 PacBio long-

read RNA-seq data. RAMPAGE-verified unannotated TSSs were more likely to overlap the 5' 

ends of PacBio reads compared to the GENCODE-matched controls (median of 3 supporting 

reads vs. 0 supporting reads, Fig. 4D, Wilcoxon test, p = 5.1 × 10−121). One example is 

highlighted at the INPP1 locus (Fig. 4E). ZH38T0029211 is a RAMPAGE-verified TSS located 

8,844 bp upstream of two GENCODE-annotated TSSs for the INPP1 gene. The majority of 

RAMPAGE reads link ZH38T0029211 to the first coding exon (exon 3), while a minority links it 

to exon 2; similarly, PacBio reads support ZH38T0029211 as a TSS of INPP1 with the majority 

also excluding exon 2. Furthermore, epigenomic signals, such as chromatin accessibility and 

histone ChIP-seq, also support ZH38T0029211 as a novel TSS of INPP1. 

 

Despite the enrichment for functional, epigenomic, and transcriptomic annotations, the 

RAMPAGE-verified unannotated TSSs were less evolutionarily conserved than their matched 

GENCODE TSSs as measured by phastCons (Siepel et al. 2005) (Fig. 4F, S4N; Wilcoxon test, 

p = 2.5 × 10−19) and liftOver (Hinrichs et al. 2006) to the mm10 genome (Supplemental Fig. 

 Cold Spring Harbor Laboratory Press on January 7, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


14 

S5O; Fisher's exact test, p = 1.5 × 10−15). However, the RAMPAGE-verified TSSs were still 

more conserved than distal enhancer cCREs (cCREs-dELS, Supplemental Fig. S5N,  

Wilcoxon test, p = 7.4 × 10−81, Supplemental Fig. S5O, Fisher's exact test p = 1.2 × 10−80) and 

much more conserved than random genomic regions (Wilcoxon test, p < 1.0 × 10−300; Fisher's 

exact test, p < 1.0 × 10−300, Supplemental Fig. S5N,O). These findings suggest that while the 

RAMPAGE-verified unannotated TSSs are more biochemically and transcriptionally active in the 

evaluated cell types, GENCODE TSSs correspond to transcripts expressed in other cell types 

that have not been surveyed by the RAMPAGE assay. Therefore, for cell type-agnostic data 

analyses, we suggest users supplement GENCODE TSS annotations with RAMPAGE-

annotated TSSs, while for cell type-specific analyses, our results show that RAMPAGE TSSs 

are a more precise and accurate set of TSSs than the using the entire set of GENCODE 

annotations.  

 

RAMPAGE rPeaks identify novel genes that are associated with GWAS 

phenotypes 

We intersected our RAMPAGE rPeaks with variants reported in the NHGRI-EBI genome-wide 

association study (GWAS) catalog to evaluate the utility of our collection of experimentally 

derived TSSs (Buniello et al. 2019). Accounting for population-specific linkage disequilibrium 

(LD, r2 > 0.7), our rPeaks overlapped 1,345 variants associated with 208 phenotypes 

(Supplemental Table S5A). These GWAS SNPs were slightly more likely to overlap the TSS of 

a major isoform compared to matched controls (70.5% vs. 66.5%, Fisher's Exact test, p = 0.01) 

and were also more likely to be eQTLs (89% vs. 65% of controls, Fisher's Exact test, p = 6.6 × 

10−119) with 86% of the eQTLs overlapping the rPeak TSSs of their eGenes. To identify disease-

associated cell and tissue types, we performed biosample enrichment analysis using our 

previously published pipeline (The ENCODE Project Consortium et al. 2020). However, unlike 

our previous work, which used nearly one million cCREs, covering ~8% of the human genome, 

our rPeaks had a much smaller genomic footprint; therefore we only observed enrichments 

passing our FDR thresholds for three phenotypes: (1) obesity related traits;  (2) intelligence; and 

(3) general cognitive ability (see Methods; Supplemental Table S5B). Generally, enriched cell 

types were related to disease etiology. For example, intelligence and cognitive ability variants 

were enriched at rPeaks active in the neuroblastoma cell line SK-N-DZ whereas obesity variants 
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were enriched in rPeaks active in a variety of gastrointestinal and thyroid tissues. This result 

suggests that while we do not have the power to determine phenotype-relevant cell types for 

most studies using only RAMPAGE rPeaks, they can still capture biologically relevant 

enrichments to aid downstream variant interpretation. 

 

Among the 1,345 variants that overlapped RAMPAGE rPeaks, 76% overlapped verified TSSs 

(50% GENCODE-annotated TSSs and 26% unannotated TSSs) and were therefore linked with 

an annotated gene by paired-end reads. Of these verified TSS-overlapping variants, 52% were 

linked with a gene that was not previously reported by the original GWAS and 37% were linked 

with a gene that was not reported by any GWAS, giving new insights into disease risk 

(Supplemental Table S5C). Of particular interest were RAMPAGE-verified unannotated 

transcript TSSs that were originally classified as intergenic using GENCODE annotations; these 

novel TSSs enabled us to assign 41 intergenic SNPs, which were associated with 68 

phenotypes, to genes. Fig. 5A highlights rs2620666, which is in high LD with two lead SNPs 

rs750472 and rs13251458 reported to be associated with several cognitive traits 

(Supplemental Table S5D). The original studies reported FOXH1 and CYHR1 as possible 

candidate genes due to their close proximity to the lead SNPs. Although rs2620666 lies only 

1,694 bp upstream of a GENCODE-annotated FOXH1 TSS, it overlaps a RAMPAGE-verified 

unannotated TSS of PPP1R16A (ZH38T0048822, Fig. 5B), which encodes a protein 

phosphatase regulatory subunit. This novel TSS is 11,915 bp upstream of the nearest 

GENCODE-annotated TSS for PPP1R16A and this gene assignment is also supported by 

PacBio reads (Fig. 5B, Supplemental Table S5E). The novel TSS has high RAMPAGE signal 

in neural cells, brain tissues, and blood cells; moreover, the GTEx consortium identified 

rs2620666 as an eQTL for several genes (Supplemental Table S5F), the most significant of 

which is PPP1R16A in whole blood samples, suggesting that this variant may influence 

PPP1R16A expression. This PPP1R16A TSS has been reported by other gene annotation 

collections, and just recently (May 2021) was included as part of the GENCODE V38 basic 

annotations. This example highlights the importance of having a comprehensive collection of 

annotated TSSs so that variants are assigned correctly to the linked genes. 

 

Finally, we investigated the 34 GWAS variants that overlapped TSSs of RAMPAGE-verified 

unannotated transcripts (Supplemental Table S5A). Of particular interest was rs10930089, an 

intergenic SNP in high LD with rs6759626 and rs9287826, two lead SNPs associated with 

general cognitive ability (Davies et al. 2018). Rs10930089 overlaps ZH38T0028803, the TSS of 
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a RAMPAGE-verified unannotated transcript that has high RAMPAGE signal in SK-N-DZ (a 

neuronal cell line), cardiac tissues, and male reproductive tissues (Fig. 5C, Supplemental 

Table S5G). ZH38T0028803 overlaps the TSSs of two lncRNA transcripts annotated in 

lncBook, both of which are consistent with the RAMPAGE reads pairs (Fig. 5D). In the other 

direction of the genome, ZH38T0028803 lies 282,766 bp upstream of KCNH7, which encodes a 

potassium voltage channel that has known roles in neurons and the heart (GeneCards Human 

Gene Database). Variants in KCNH7 have also been previously associated with bipolar disorder 

(Strauss et al. 2014) and treatment response in schizophrenia (Wang et al. 2019), suggesting it 

may play an important role in neuronal pathways. We found that 3D chromatin contact data 

linked ZH38T0028803 with KCNH7 in cardiac myocytes (Montefiori et al. 2018) (Fig. 5C) but not 

in iPSC-derived neurons (Rajarajan et al. 2018; Song et al. 2019). Furthermore, ZH38T0028803 

has high chromatin accessibility in SK-N-DZ, cardiac cells, and heart tissues, but low chromatin 

accessibility in fetal brain and iPSC-derived neurons (Supplemental Table S5H). Taken 

together, these results suggest that rs10930089 may modulate the function of ZH38T0028803, 

the TSS of a lncRNA expressed in neuronal and cardiac cells, and this TSS may also acts as an 

enhancer for KCNH7 in both of these two types of cells, with the caveat that the 3D connection 

is in neuronal cell types other than iPSC-derived neurons. 

 

Discussion 

We annotated 52,546 RAMPAGE rPeaks by integrating 115 RAMPAGE experiments, uniformly 

curating sites of transcription in hundreds of human cell and tissue types. Using paired-end 

RAMPAGE reads, we assigned the majority of these rPeaks as TSSs of annotated genes and 

additionally identified TSSs of over four thousand novel transcripts. We then showed that the 

TSSs in our catalog were enriched for various regulatory signatures defined using epigenetic 

and functional data and our catalog complements existing TSS annotations such as those by 

GENCODE. Through systematic comparisons with CAGE, GRO-cap and PacBio long-read 

data, we also determined that our catalog of RAMPAGE rPeaks were highly precise and 

accurate. In particular, PacBio and RAMPAGE had the highest overlap in both GM1878 and 

K562 cells. PacBio long reads not only supported our RAMPAGE TSS annotations but also 

supported our assignments of these TSSs to genes (Fig. 4E, 5B, S3B-D). PacBio long-read 

data are particularly advantageous as they allow us to identify novel isoforms and annotate the 

3' ends of transcripts in addition to annotating TSSs. As these data continue to be produced for 
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a wide variety of biosamples by the ENCODE consortium, they will be very useful for further 

expanding our TSS catalog and enriching transcript annotations. 

 

In both K562 and GM12878 cells, CAGE peaks tended to be the least concordant with the 

RAMPAGE rPeaks and PacBio 5' ends (Supplemental Fig. S3B). We also noted that CAGE-

specific peaks were much more likely to be intronic and intergenic than RAMPAGE rPeaks. 

However, CAGE peaks were supported by GRO-cap signals at a comparable level as 

RAMPAGE rPeaks, suggesting that CAGE-specific peaks contain true TSSs (Supplemental 

Fig. S3B). We hypothesize that the CAGE assay can identify a subclass of intergenic and 

intronic transcription sites, likely eRNAs, that are not detected by RAMPAGE or PacBio long-

read RNA-seq. This ability can be used to annotate TSS-distal regulatory elements. Thus, 

additional comparisons need to be performed with transcription assays that have high rates of 

eRNA detection, such as BruUV-seq (Magnuson et al. 2015) and PRO-seq/cap (Kwak et al. 

2013). 

 

When we compared our catalog of RAMPAGE rPeaks to the FANTOM consortium's CAGE 

peak collection, we found that loci missed by RAMPAGE were primarily due to differences in 

surveyed biosamples (Fig. 2C). This result indicates that there is high variability in the 

transcriptional landscapes among different cell types and a more comprehensive TSS collection 

can be achieved by surveying a larger collection of biosamples; however, there are additional 

considerations regarding the composition of a sample collection. Though we currently include 

over one-hundred biosamples in our RAMPAGE rPeak catalog, the majority of these 

biosamples are bulk tissue samples which comprise many different cell types. We found that 

tissue samples generally clustered separately from primary and in vitro differentiated cell 

samples despite some sharing similar biological profiles (Supplemental Fig. S1F), possibly due 

to the technical differences in assaying tissues versus cells. The impact of biosample 

composition on TSS annotation was also apparent when we observed an enrichment of neuron-

related Gene Ontology terms for CAGE-only genes despite the presence of fetal brain tissues 

and iPSC-derived neurons in our RAMPAGE sample collection. This result suggests that these 

early developmental brain tissues may be dominated by precursor cells such as immature 

neuronal progenitors or radial glia and that the iPSC-derived neurons may represent alternative 

cell states from mature neurons. On a genome-wide scale, SK-N-DZ has a transcriptional profile 

that is more similar to iPSC-derived neurons than to mature neurons, as evident from UMAP 

embedding (Supplemental Fig. S1F). The discrepancy among the different types of neuronal 
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cells was further highlighted by our GWAS analysis where we observed that the cognitive 

phenotype related SNPs overlapped a novel TSS active in SK-N-DZ cells but not in iPSC-

derived neurons. Therefore, although SK-N-DZ cells overall share similar transcriptomic 

signatures to iPSC-derived neurons, there are subtle differences in cellular state that may have 

important impacts on variant and disease interpretation. With further developments of single-cell 

transcriptomic technologies to capture the 5´end of transcripts, it will be important to expand our 

TSS identification methods to build a comprehensive catalog by cell type, particularly in 

heterogeneous tissues such as the brain. 

 

Even though we observed enrichments in some tissues for GWAS variants associated with 

three phenotypes, our comparisons were underpowered compared to our previous work (The 

ENCODE Project Consortium et al. 2020) due to the small genomic footprint of RAMPAGE 

rPeaks. Despite this, we demonstrated that accurate TSS annotations, particularly those TSSs 

linked with known transcripts, are important for interpreting variants reported by GWAS. 

Additionally, we anticipate that such collections will also be important for the detection and 

interpretation of rare and de novo variants uncovered by whole-genome sequencing efforts, as 

these variants have larger effect sizes and may be more likely to fall within promoter regions 

than in distal regulatory elements. For example, a recent study found an enrichment of de novo 

variants associated with autism spectrum disorder in promoters (An et al. 2018). Therefore, 

accurate, cell type-specific TSS annotations can improve our power for interpreting the impact 

of de novo genetic variation across cell types. 

 

Finally, we identified 4,129 TSSs for unannotated transcripts, many of which we hypothesize to 

be lncRNAs although we could not test this hypothesis with only the beginning portion of these 

transcripts. It is also unclear if these transcripts carry out any cellular functions. A wide range of 

functional mechanisms have been reported for lncRNAs, varying from transcriptional regulation 

of other genes via epigenetic or antisense means to simply being the byproducts of strong 

enhancers (Quinn and Chang 2016; Fang and Fullwood 2016). With development of antisense 

oligonucleotide (ASO) and CRISPR perturbation technologies, it is now possible to perform 

screens to identify functional lncRNAs in a high-throughput manner (Joung et al. 2017; Liu et al. 

2017; Ramilowski et al. 2020). As these collections of functionally validated lncRNAs become 

available across diverse cellular contexts, we plan to further refine our TSS catalog to include 

such functional information.  
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There are some limitations to our catalog of RAMPAGE rPeaks, which should be considered as 

they may bias results towards highly expressed, stable transcripts. One caveat to our catalog is 

that it primarily contains TSSs for stable transcripts, as comparisons with NET-CAGE and GRO-

cap data demonstrated that the RAMPAGE assay is generally unable to detect TSSs of 

unstable transcripts such as eRNAs. Additionally, using RAMPAGE rPeaks, we identified 17% 

fewer genes compared to CAGE and PacBio data in the same cell types. Thus, although we 

demonstrated that our collection likely has a lower false discovery rate, we may be 

underreporting transcriptional events. Finally, the 5’ ends of some RAMPAGE read pairs may be 

imprecise due to fragmentation and degradation. However, aggregation analysis of other 

transcription assays revealed a sharp peak of signal centered on RAMPAGE rPeaks 

(Supplemental Fig. S3F-K), suggesting that only a very small percentage of sites may be 

impacted by such technical artifacts . Overall, our rPeak catalog is highly concordant with other 

assays even at the base pair level. In the future, we hope to expand this catalog using 

transcription annotations from more assays as they become available in a wider variety of cell 

and tissue types. 

 

In summary, our catalog of RAMPAGE rPeaks expands the human transcriptional landscape 

across over one hundred cell and tissue types. The catalog provides a valuable resource to the 

biological community by improving annotations for studying gene regulation and aiding in the 

interpretation of genetic variants associated with human diseases. 

 

Methods 

Detailed methods and corresponding code can be found in the Supplemental Methods. 

 

Generating a collection of RAMPAGE rPeaks 

We downloaded RAMPAGE BAM alignment files that contained reads mapped to the 

GRCh38/hg38 reference genome. We then removed redundant reads as described in (Zhang et 

al. 2019) and pooled read pairs from biological replicates. We created signal files of the 5' ends 

of R1 reads that we used for all subsequent signal quantifications. Finally, we excluded all 

experiments with a non-redundancy fraction less than 0.25, which resulted in a final collection of 

115 high quality RAMPAGE experiments (Supplemental Table S1). We then called RAMPAGE 

peaks as described in (Zhang et al. 2019). For each peak, we identified a high-density region, 

which contained 80% of the reads in each original peak, and a summit, which was the genomic 

position with the highest number of 5' read ends. For each RAMPAGE experiment, the Gingeras 
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lab also performed a matching total RNA-seq experiment on the same biosample, which we 

used to filter RAMPAGE peaks. We excluded peaks whose RNA-seq signals were greater than 

their RAMPAGE signals (i.e., peaks that fell below the x=y line, Supplemental Fig. S1). Finally, 

to further select for high-quality annotations, we only retained peaks with RPM (reads per 

million) > 2 (Supplemental Table S1). 

 

To generate representative RAMPAGE peaks (RAMPAGE rPeaks), we adapted the 

representative DNase I Hypersensitivity Site (rDHS) pipeline as described by (The ENCODE 

Project Consortium et al. 2020). First, to retain strand-specific information, we separated peaks 

based on DNA strand, and then clustered the strand-specific peaks across all 115 experiments. 

For each cluster, we selected the peak with the highest RPKM (reads per kilobase per million) 

signal as the rPeak. All peaks that overlapped this rPeak were then removed. We iteratively 

repeated this process until all 1.1 M RAMPAGE peaks were represented by a collection of 

80,157 non-overlapping rPeaks. To reduce false positives, we discarded all singleton rPeaks 

(i.e., rPeaks that represented only one experiment) unless they had an RPM > 5, resulting in a 

final set of 52,546 rPeaks.  

 

Genomic context and enrichment 

We used the following hierarchical approach to assign genomic context to annotations 

(including RAMPAGE rPeaks and FANTOM CAGE peaks).  

 

1) TSS-overlapping: rPeak overlapped an annotated TSS from GENCODEv31 basic 

annotations. 

2) TSS-Proximal: rPeak fell within ± 500 bp of an annotated TSS from GENCODEv31 

basic. Required at least 50% of the RAMPAGE rPeak to overlap region. 

3) Exon: rPeak overlapped "exon" annotation from GENCODEv31 basic which include 

coding exons (CDS), exons of non-coding genes, and untranslated regions (UTRs). 

Required at least 50% of the RAMPAGE rPeak to overlap exon. 

4) Intron: rPeak overlapped an annotated gene from GENCODEv31 basic but not an exon. 

Required at least 50% of the RAMPAGE rPeak to overlap gene. 

5) Intergenic: all remaining rPeaks 

 

We annotated each rPeak with strand information by assigning the strand of the overlapping 

transcript for TSS-overlapping, Exon, and Intron rPeaks or closest gene for TSS-proximal and 
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Intergenic rPeaks. To determine the genomic background, we calculated the percentage of the 

GRCh38 genome comprising each of the annotations. We then determined the percentage of 

total rPeaks falling in each annotation and calculated fold enrichment.  

 

Boundary and summit analysis 

For each rPeak, we calculated the median peak boundary, high-density boundary and summit 

variation for each peak that was represented. We did not include peaks that were selected as 

the rPeaks in this analysis. 

 

UMAP 

We performed two separate UMAP analyses: one using all 115 biosamples (Supplemental Fig. 

S1F) and one using the subset of all 87 tissue samples (Fig. 1G). For each biosample, we 

calculated the RPKM (reads per kilobase per million) at each rPeak. We then took the Log10 and 

normalized these values before implementing the UMAP algorithm. 

 

Comparisons with other transcription annotations 

Comparison with CAGE peaks 

We downloaded CAGE peaks and quantifications from the FANTOM consortium (Abugessaisa 

et al. 2017). To compare the overall concordance of peak collections, we intersected the entire 

collection of CAGE peaks with the entire collection of RAMPAGE peaks requiring at least 25% 

of the CAGE peak to overlap the RAMPAGE peak and the peaks to fall on the same strand. To 

extract peaks active in K562 and GM12878, we selected all peaks with an average TPM 

(transcripts per million) > 2 across the three surveyed replicates. We intersected these peaks 

with RAMPAGE rPeaks with RPM > 2 in K562 and GM12878, respectively, requiring 

overlapping peaks to be on the same strand and overlap a minimum of 25% of the CAGE peak. 

 

Comparison with CAGE and NET-CAGE enhancers 

We downloaded CAGE & NET-CAGE enhancers from (Hirabayashi et al. 2019). We lifted the 

enhancers to the hg38 genome and intersected them with RAMPAGE rPeaks. We then stratified 

the enhancer annotations as to whether they were detected by CAGE (N=65,423) or only NET-

CAGE (N=20,363) and calculated the total percent overlap with the RAMPAGE rPeaks. 
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Comparison with PacBio long-read RNA-seq data 

We downloaded the PacBio BAM files from the ENCODE project data portal and merged 

replicates. We then intersected PacBio 5' read ends with RAMPAGE and CAGE peaks and only 

considered strand matching intersections. 

  

Comparison with GRO-cap signal 

We downloaded GRO-cap signal files from (Core et al. 2014). To calculate average signal at 

RAMPAGE rPeaks, CAGE peaks, and PacBio 5' ends, we lifted down the 1 bp summits or read 

ends to the hg19 genome. We then set region width to a uniform 50 bp centered on the peak 

summits or 5' ends and calculated the average signal across each region. To determine a signal 

threshold for high GRO-cap signal, we first randomly selected 500k 50 bp genomic regions and 

calculated their average GRO-cap signal. We then selected the 99.5th percentile as the 

threshold for high signal which was 0.06 in K562 and 0.08 in GM12878. 

 

Comparison with GRO-cap peaks 

We downloaded GRO-cap peak calls from (Core et al. 2014). We intersected these GRO-cap 

peaks with RAMPAGE rPeaks, CAGE peaks, and RAMPAGE PacBio reads requiring 

annotations to be on the same strand. From the same study, we also obtained sets of paired 

GRO-cap peaks in GM12878 and K562 that were classified by stability. We lifted these peaks to 

the hg38 genome and intersected them with RAMPAGE rPeaks requiring annotations to be on 

the same strand. We then calculated the overall percentage of each category that overlapped 

the rPeaks. 

 

Comparison of GENCODE covered genes 

We first set peak width to a uniform 100 bp centered around each peak summit or 5' read end 

and then intersected these regions with annotated TSSs of GENCODE V31 genes requiring 

annotations to be on the same strand. We performed Gene Ontology analysis using 

PantherDB's online database (Mi et al. 2017). We first performed this analysis for the entire sets 

of RAMPAGE and CAGE peaks, then for peaks and PacBio 5' read ends in K562 and GM12878 

cells.  
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Aggregate transcriptomic signals at RAMPAGE rPeaks 

Using 1 bp bins, we calculated the average CAGE, PacBio, and GRO-cap signals along a 4 kb 

window centered across the summits of RAMPAGE rPeaks active in either K562 or GM12878 

cells. In all three assays, we calculated strand-specific signal for each rPeak. 

 

Assigning RAMPAGE rPeaks to Genes 

Curating verified GENCODE TSSs, verified unannotated TSSs, unannotated transcript 

TSSs and local transcription rPeaks 

We developed the following computational workflow to link RAMPAGE rPeaks with genes, 

which is detailed in Fig. S3A. Briefly, based on the genomic context of the rPeak and the 

location of its supporting 3' reads, we assigned the rPeak into one of six categories:  

 

1) Verified GENCODE TSS: rPeak overlaps an annotated GENCODE TSS and its 3' read 

ends overlap a downstream exon. 

2) Verified unannotated TSS: rPeak does not overlap an annotated GENCODE TSS (i.e., 

rPeak is either TSS-proximal, exonic, intronic, or intergenic) and its 3' read ends overlap 

a downstream exon. 

3) Candidate GENCODE TSS: rPeak overlaps a TSS, first exon or is TSS-proximal to 

either a single exon transcript, or a transcript with a first exon greater than 500 nt. 

4) Unannotated transcript TSS: rPeak is supported by reads with 3' ends that do not 

overlap an annotated GENCODE exon.  

5) Local transcription: rPeak is supported by reads that span less than 1 kb or map to the 

first exon of the transcript. 

6) Discard: We discarded all rPeaks that overlapped exons that were not the first exon of a 

transcript or only supported by reads that spanned more than 500 kb.    

 

Overlap of novel transcripts with lncRNAs 

We downloaded lncRNA annotations from lncBook (Ma et al. 2019) and extracted annotated 

TSSs. Then, we intersected RAMPAGE rPeaks requiring annotations to be on the same strand. 

We also calculated the overlap of lncBook TSSs with 500k 100 bp random genomic regions. 

 

Scanning transcripts for open reading frames 

We intersected our RAMPAGE rPeaks with PacBio reads to delineate produced transcripts and 

then scanned these transcripts using NCBI’s ORFfinder tool (Wheeler et al. 2003). Stratifying by 
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our rPeak TSS assignment, we calculated the number of uniquely identified ORFs for each 

rPeak. 

 

Characterizing biosample profiles of RAMPAGE TSSs 

We selected all GENCODE genes with at least one linked RAMPAGE rPeak (either verified 

GENCODE or verified unannotated). For each gene, we calculated two metrics:  

1) The total number of biosamples in which the gene was expressed.  

2) The total biosample space which was a concatenated list of all biosamples for which any 

linked RAMPAGE rPeak was expressed. 

 

To evaluate the cell type-specificity of gene and transcript expression, we compared the number 

of active biosamples (RPM > 2) for each RAMPAGE rPeak and its linked gene. To determine 

whether the transcripts resulting from rPeak TSSs correspond to major or minor isoforms, we 

calculated the total number of biosamples for which the rPeak has an RPM > 2 and then divided 

this by the total biosample space of its linked gene. 

 

Comparison of GENCODE and verified TSSs 

Generating sets of matched GENCODE TSSs 

We first selected all GENCODE genes that did not have a single annotated TSS overlapping a 

RAMPAGE rPeak. Of these, we then selected all genes with a RAMPAGE-verified TSS. 

Because of the no overlapping requirement, these RAMPAGE-verified TSSs were either TSS-

proximal, exonic, intronic, or intergenic. The GENCODE-annotated TSSs of these genes served 

as the matched GENCODE TSS set. We also curated K562-specific annotations by selecting all 

RAMPAGE-verified TSSs with an RPM > 2 in K562 and their matched GENCODE TSSs. Unlike 

the RAMPAGE-verified TSSs, GENCODE TSSs were only 1 bp in width; therefore, to eliminate 

biases due to region width, we generated uniform 100 bp regions centered on either 

RAMPAGE-verified TSS summits or GENCODE TSSs, respectively. 

 

Overlap of RAMPAGE-verified and matched GENCODE TSSs with ENCODE cCREs, GTEx 

eQTLs, and SuRE peaks. 

We intersected the uniform 100 bp sized TSS regions with genomic annotations as follows. We 

downloaded cell type-agnostic cCREs and K562-specific cCREs from the ENCODE SCREEN 

database (screen.encodeproject.org). For the K562 cCREs, we filtered out "Low-DNase" 

cCREs, which are regulatory regions deemed inactive in the cell type. We downloaded version 8 
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eQTLs from the GTEx database and reformatted them into BED format. We downloaded SuRE 

peaks from (van Arensbergen et al. 2017), and lifted the regions to the hg38 genome.  

 

Aggregate epigenomic signals at RAMPAGE-verified and matched GENCODE TSSs 

We calculated the average DNase I-seq and H3K4me3, H3K27ac and Pol II ChIP-seq signals, 

along a 4 kb window centered across the RAMPAGE-verified rPeak summit or matched 

GENCODE TSS, respectively, accounting for strand orientation. We used the following signal 

files from the ENCODE portal: ENCFF971AHO, ENCFF847JMY, ENCFF779QTH, 

ENCFF321FZQ. 

 

Conservation of RAMPAGE-verified and matched GENCODE TSSs 

We calculated the average 100-way vertebrate phastCons conservation across the uniform 100 

bp TSS regions. We also lifted the uniform 100 bp sized TSS regions to the mm10 genome and 

calculated the percentage of total regions that successfully lifted over. We also compared the lift 

over rates of ENCODE cCREs-dELS—extracted from the cell type-agnostic set of cCREs—and 

500k random regions of the genome. For comparison, both these sets of regions were resized 

to 100 bp around the region center. 

 

Interpreting GWAS variants with the RAMPAGE rPeak catalog 

Overlap of GWAS variants 

We curated SNPs reported by the NHGRI-EBI GWAS catalog as of January 2019 and using 

population-specific linkage disequilibrium, incorporating all SNPs in high LD (r2 > 0.7) with this 

collection, as described in (The ENCODE Project Consortium et al. 2020). We intersected this 

collection with our RAMPAGE rPeak catalog. To compare gene assignments, we extracted 

reported and mapped genes from the original studies and determined if our rPeak linked genes 

(from read pair analysis) were represented in the list. 

 

Comparison with eQTLs 

As previously mentioned, we downloaded eQTLs from the GTEx database. We then compared 

the overlap between GWAS SNPs and matched controls as defined in (The ENCODE Project 

Consortium et al. 2020) and calculated the number of SNPs in each group that was linked to the 

same gene by both RAMPAGE reads and expression changes (eQTL). 
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Cell type enrichment 

We tested whether sets of GWAS SNPs were enriched in RAMPAGE rPeaks activity in specific 

biosamples using the same GWAS enrichment pipeline as described in (The ENCODE Project 

Consortium et al. 2020). Because RAMPAGE rPeaks have a much smaller genomic footprint 

than other collections of genomic regions (e.g., cCREs), we only included studies for which at 

least 15 LD blocks contained a SNP that overlapped a RAMPAGE rPeak. We reported all 

enrichments with an FDR corrected p-value less than 0.05 (Supplemental Table S5B). 

 

3D chromatin interactions between ZH38T0028803 and KCNH7  

We downloaded the cardiomyocyte promoter capture Hi-C data from (Montefiori et al. 2018) and 

iPSC neuron promoter capture Hi-C data from (Song et al. 2019). We also requested iPSC 

neuron Hi-C loop calls directly from (Rajarajan et al. 2018), who generously provided these 

annotations. We intersected links with the KCNH7 locus, requiring one of the KCNH7 

GENCODE TSSs to overlap one anchor and ZH38T0028803 to overlap the other anchor.  

 

Data access 

All raw and processed sequencing data generated in this study have been submitted to the 

ENCODE Project Data Portal (https://www.encodeproject.org/) under the data collection 

https://www.encodeproject.org/carts/2ac8b407-bee2-4ed3-ac2e-d284cdc48e41/ 

 

A UCSC Genome Browser track hub for the hg38 genome build is available at 

http://users.wenglab.org/moorej3/RAMPAGE/hub.txt. 

 

Code for computational analysis is available at https://github.com/weng-lab/RAMPAGE-Analysis 

and as Supplemental Code. 

 

Competing Interests 

Z. Weng is a co-founder of Rgenta Therapeutics and she serves on its scientific advisory board. 

 

Acknowledgements 

We thank Gabriela Balderrama-Gutierrez, Diane Trout, and Julien Lagarde for discussions on 

how to best analyze TSSs from long read PacBio data. This work was supported by grants from 

the NIH under U24HG009446 to Z.W. and UM1HG009443 to A.M. 

 Cold Spring Harbor Laboratory Press on January 7, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


27 

 

Author contributions: J.E.M. and Z.W. conceived and designed the project. A.M. led the 

production of PacBio long read data. Z.W. supervised the project. J.E.M led the bioinformatics 

analysis with contributions from X.-O.Z., S.I.E, K.F, H.E.P, and F.R. J.E.M and Z.W. analyzed 

the data and wrote the paper with contributions from X.-O.Z., S.I.E, K.F, H.E.P, F.R and A.M. 

 

References 

Abugessaisa I, Noguchi S, Hasegawa A, Harshbarger J, Kondo A, Lizio M, Severin J, Carninci 
P, Kawaji H, Kasukawa T. 2017. FANTOM5 CAGE profiles of human and mouse 
reprocessed for GRCh38 and GRCm38 genome assemblies. Sci Data 4: 170107. 

An J-Y, Lin K, Zhu L, Werling DM, Dong S, Brand H, Wang HZ, Zhao X, Schwartz GB, Collins 
RL, et al. 2018. Genome-wide de novo risk score implicates promoter variation in autism 
spectrum disorder. Science 362. http://dx.doi.org/10.1126/science.aat6576. 

Batut P, Dobin A, Plessy C, Carninci P, Gingeras TR. 2013. High-fidelity promoter profiling 
reveals widespread alternative promoter usage and transposon-driven developmental gene 
expression. Genome Res 23: 169–180. 

Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, 
Morales J, Mountjoy E, Sollis E, et al. 2019. The NHGRI-EBI GWAS Catalog of published 
genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic 
Acids Res 47: D1005–D1012. 

Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CAM, 
Taylor MS, Engström PG, Frith MC, et al. 2006. Genome-wide analysis of mammalian 
promoter architecture and evolution. Nat Genet 38: 626–635. 

Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. 2014. Analysis of nascent RNA 
identifies a unified architecture of initiation regions at mammalian promoters and 
enhancers. Nat Genet 46: 1311–1320. 

Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, Hagenaars SP, Ritchie SJ, 
Marioni RE, Fawns-Ritchie C, et al. 2018. Study of 300,486 individuals identifies 148 
independent genetic loci influencing general cognitive function. Nat Commun 9: 2098. 

The ENCODE Project Consortium, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, 
Adrian J, Kawli T, Davis CA, Dobin A, et al. 2020. Expanded encyclopaedias of DNA 
elements in the human and mouse genomes. Nature 583: 699–710. 

Fang Y, Fullwood MJ. 2016. Roles, Functions, and Mechanisms of Long Non-coding RNAs in 
Cancer. Genomics Proteomics Bioinformatics 14: 42–54. 

Fan K, Moore JE, Zhang X-O, Weng Z. 2021. Genetic and epigenetic features of promoters with 
ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes. 
Nucleic Acids Res 49: 5705–5725. 

 Cold Spring Harbor Laboratory Press on January 7, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


28 

The FANTOM Consortium and the RIKEN PMI and CLST (DGT). 2014. A promoter-level 
mammalian expression atlas. Nature 507: 462-470. 

Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, 
Wright J, Armstrong J, et al. 2019. GENCODE reference annotation for the human and 
mouse genomes. Nucleic Acids Res 47: D766–D773. 

GeneCards Human Gene Database. KCNH7 Gene - GeneCards. 
https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNH7 (Accessed September 4, 
2020). 

GTEx Consortium. 2020. The GTEx Consortium atlas of genetic regulatory effects across 
human tissues. Science 369: 1318–1330. 

GTEx Consortium. 2017. Genetic effects on gene expression across human tissues. Nature 
550: 204-213. 

Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey 
TS, Harte RA, Hsu F, et al. 2006. The UCSC Genome Browser Database: update 2006. 
Nucleic Acids Res 34: D590–8. 

Hirabayashi S, Bhagat S, Matsuki Y, Takegami Y, Uehata T, Kanemaru A, Itoh M, Shirakawa K, 
Takaori-Kondo A, Takeuchi O, et al. 2019. NET-CAGE characterizes the dynamics and 
topology of human transcribed cis-regulatory elements. Nat Genet 51: 1369–1379. 

Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, Gootenberg JS, 
Sanjana NE, Wright JB, Fulco CP, et al. 2017. Genome-scale activation screen identifies a 
lncRNA locus regulating a gene neighbourhood. Nature 548: 343–346. 

Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, 
Kai C, Harbers M, et al. 2006. CAGE: cap analysis of gene expression. Nat Methods 3: 
211–222. 

Kwak H, Fuda NJ, Core LJ, Lis JT. 2013. Precise maps of RNA polymerase reveal how 
promoters direct initiation and pausing. Science 339: 950–953. 

Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, 
Chen Y, et al. 2017. CRISPRi-based genome-scale identification of functional long 
noncoding RNA loci in human cells. Science 355. 
http://dx.doi.org/10.1126/science.aah7111. 

Magnuson B, Veloso A, Kirkconnell KS, de Andrade Lima LC, Paulsen MT, Ljungman EA, Bedi 
K, Prasad J, Wilson TE, Ljungman M. 2015. Identifying transcription start sites and active 
enhancer elements using BruUV-seq. Sci Rep 5: 17978. 

Ma L, Cao J, Liu L, Du Q, Li Z, Zou D, Bajic VB, Zhang Z. 2019. LncBook: a curated 
knowledgebase of human long non-coding RNAs. Nucleic Acids Res 47: 2699. 

Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. 2017. PANTHER 
version 11: expanded annotation data from Gene Ontology and Reactome pathways, and 
data analysis tool enhancements. Nucleic Acids Res 45: D183–D189. 

Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz 

 Cold Spring Harbor Laboratory Press on January 7, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


29 

IP, McNally EM, Nóbrega MA. 2018. A promoter interaction map for cardiovascular disease 
genetics. Elife 7. http://dx.doi.org/10.7554/eLife.35788. 

Naro C, Cesari E, Sette C. 2021. Splicing regulation in brain and testis: common themes for 
highly specialized organs. Cell Cycle 20: 480–489. 

Quinn JJ, Chang HY. 2016. Unique features of long non-coding RNA biogenesis and function. 
Nat Rev Genet 17: 47–62. 

Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, Powell S, Yashaswini C, 
LaMarca EA, Kassim B, et al. 2018. Neuron-specific signatures in the chromosomal 
connectome associated with schizophrenia risk. Science 362. 
http://dx.doi.org/10.1126/science.aat4311. 

Ramilowski JA, Yip CW, Agrawal S, Chang J-C, Ciani Y, Kulakovskiy IV, Mendez M, Ooi JLC, 
Ouyang JF, Parkinson N, et al. 2020. Functional annotation of human long noncoding 
RNAs via molecular phenotyping. Genome Res 30: 1060–1072. 

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, 
Hillier LW, Richards S, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, 
worm, and yeast genomes. Genome Res 15: 1034–1050. 

Song M, Yang X, Ren X, Maliskova L, Li B, Jones IR, Wang C, Jacob F, Wu K, Traglia M, et al. 
2019. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric 
disorder risk variants to target genes. Nat Genet 51: 1252–1262. 

Strauss KA, Markx S, Georgi B, Paul SM, Jinks RN, Hoshi T, McDonald A, First MB, Liu W, 
Benkert AR, et al. 2014. A population-based study of KCNH7 p.Arg394His and bipolar 
spectrum disorder. Human Molecular Genetics 23: 6395–6406. 
http://dx.doi.org/10.1093/hmg/ddu335. 

Trotman JB, Schoenberg DR. 2019. A recap of RNA recapping. Wiley Interdiscip Rev RNA 10: 
e1504. 

van Arensbergen J, FitzPatrick VD, de Haas M, Pagie L, Sluimer J, Bussemaker HJ, van 
Steensel B. 2017. Genome-wide mapping of autonomous promoter activity in human cells. 
Nat Biotechnol 35: 145–153. 

Wang X, Su Y, Yan H, Huang Z, Huang Y, Yue W. 2019. Association Study of KCNH7 
Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia. 
Front Psychiatry 10: 633. 

Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml 
LM, Sequeira E, Tatusova TA, et al. 2003. Database resources of the National Center for 
Biotechnology. Nucleic Acids Res 31: 28–33. 

Wyman D, Balderrama-Gutierrez G, Reese F, Jiang S, Rahmanian S, Forner S, Matheos D, 
Zeng W, Williams B, Trout D, et al. A technology-agnostic long-read analysis pipeline for 
transcriptome discovery and quantification. http://dx.doi.org/10.1101/672931. 

Zhang XO, Gingeras TR, Weng Z. 2019. Genome-wide analysis of polymerase III–transcribed 
Alu elements suggests cell-type–specific enhancer function. Genome Res. 

 Cold Spring Harbor Laboratory Press on January 7, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


30 

https://genome.cshlp.org/content/29/9/1402.short. 

 

Figure legends 

Figure 1. Curating a collection of representative RAMPAGE peaks (rPeaks) across 115 

biosamples. (A) Workflow for curating RAMPAGE rPeaks. First, we called peaks in individual 

RAMPAGE datasets across 115 cell types and tissues. We then pooled these peaks 

(N=1,147,456) and separated them by genomic strand. We clustered overlapping peaks on the 

same strand, selected the peak with the highest RAMPAGE signal (i.e., the rPeak) to represent 

each cluster, removed all the peaks overlapping the rPeak from the pool, and performed 

clustering on the remaining peaks. We repeated this process iteratively until all peaks were 

accounted for by rPeaks. We performed additional filtering using RNA-seq data, removing 

peaks that had a higher RNA-seq signal than RAMPAGE signal, finally arriving at 52,546 

rPeaks. (B) Bar plots showing the number of RAMPAGE rPeaks stratified into distinct sets by 

genome context: overlapping GENCODE V31 TSSs (red), proximal (± 500 bp) to TSSs (pink), 

overlapping exons (dark green), overlapping introns (light green), and intergenic (gray). (C) Bar 

plots showing the fold enrichment for the number of genomic positions covered by rPeaks over 

the footprints of the genomic contexts in B. (D) Bar plots showing the percentage of rPeaks in 

each genomic context as in b that are on the same strand as their overlapping TSS, gene (exon 

and intron), or nearest gene (TSS-proximal and intergenic). (E) Box plots displaying the 

variation in the positions of rPeak summits (left), high-density region boundaries (middle), and 

full peak boundaries (right), stratified by the genomic contexts as in B. (F) An example TSS-

overlapping rPeak ZH38T000123 from K562 cells and the RAMPAGE peaks it represents in 113 

other biosamples. For each peak, the full width is denoted in light blue, high-density regions in 

blue, and summit in black. (G) Scatterplot displaying a two-dimensional Uniform Manifold 

Approximation and Projection (UMAP) embedding of 87 tissue samples using RAMPAGE signal 

across all rPeaks as input features. Circles denote adult tissues and triangles denote fetal 

tissues. Markers are colored by tissue of origin as defined in the legend. 

 

Figure 2. RAMPAGE rPeaks are concordant with other transcriptome annotations. (A)  Bar 

graph showing the percentage of RAMPAGE rPeaks that overlap CAGE peaks (purple) and the 

percentage of CAGE peaks that overlap RAMPAGE rPeaks (pink). (B) Bar graph showing the 

percentages of CAGE-overlapping RAMPAGE peaks in specific genomic contexts as defined in 

Fig. 1B. (C) Venn diagram depicting the overlap of genes whose TSSs have at least one peak 
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within 500 bp between the sets of CAGE peaks (pink) and RAMPAGE rPeaks (purple). Below 

are representative Gene Ontology terms (cellular component) enriched in CAGE-only genes 

(pink) or RAMPAGE-only genes (purple). A full list of enriched terms can be found in 

Supplemental Table S2. (D) Density plot showing the distributions of the similarity scores for 

sequences surrounding the TSSs of immunoglobulin kappa (IGK) genes supported by only 

RAMPAGE peaks (purple) or only CAGE peaks (pink). Sequence similarity was calculated as 

the maximal score of all pairwise local alignments. P-value corresponds to a two-sided Wilcoxon 

test. (E) (top) VennPie diagram with concentric circles displaying K562 RAMPAGE rPeaks that 

overlap K562 CAGE peaks (pink) or PacBio 5' ends (green), or have high GRO-seq signals 

(orange). The overall percentages are shown in parentheses. (bottom) Bar plot with the number 

of K562 rPeaks stratified by the number of supporting transcriptomic assays in the above 

VennPie. (F) Violin-boxplot showing the distributions of the K562 RAMPAGE signal of rPeaks 

stratified by the number of supporting assays as defined in E. P-values correspond to two-sided 

pairwise Wilcoxon tests with FDR correction. (G) Stacked bar graphs showing the percentage of 

K562 rPeaks belonging to each genomic context (TSS: red, TSS-proximal: pink, exon: dark 

green, intron: light green, intergenic: gray) stratified by the number of supporting assays as 

defined in E. P-values correspond to Chi-square tests. 

 

Figure 3 | Assigning RAMPAGE rPeaks to genes using paired-end reads. (A) Schematic 

demonstrating how paired-end RAMPAGE reads (purple) can distinguish between spliced and 

unspliced transcripts, unlike single-end CAGE reads (pink). (B) Density plot of the distances 

between the 5' and 3' ends of RAMPAGE read pairs, stratified by rPeak genomic context. The 

maximum fragment length (1 kb) is shown by the dashed line. (C) Schematic depicting the 

paired-end read method for linking RAMPAGE rPeaks with genes and the resulting five 

categories. (D) Pie chart displaying the percentage of RAMPAGE rPeaks classified as the five 

categories in C: verified GENCODE TSSs (red), verified unannotated TSSs (orange), candidate 

GENCODE TSSs (yellow), unannotated transcript TSSs (blue), or local transcription (gray). (E) 

Bar graphs showing the number of GENCODE genes (left) and transcripts (right) that are 

accounted for by overlapping RAMPAGE rPeaks (black) vs. the paired-end read method 

illustrated in A and C (colors). Bars for the paired-end method are stratified by TSS class (as 

defined in C, D). Genes with multiple TSSs were counted only once with the following priority: 

verified GENCODE TSSs, verified unannotated TSSs, then candidate GENCODE TSSs. (F) Bar 

graphs showing the percentage of rPeaks that are classified as verified GENCODE TSSs (red), 
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verified unannotated TSSs (orange), candidate GENCODE TSSs (yellow), unannotated 

transcript TSSs (blue), or local transcription (gray), stratified by genomic context. 

 

Figure 4. RAMPAGE-verified rPeaks are enriched for regulatory signatures. (A) Bar plots 

display the percentage of RAMPAGE-verified TSSs (purple) and matched GENCODE-

annotated TSSs (gray) that overlap cell type-agnostic cCREs and the full compendium of  GTEx 

eQTLs. P-values are from Fisher's exact test. (B) Bar plots display the percentage of 

RAMPAGE-verified TSSs expressed in K562 (purple) and matching GENCODE-annotated 

TSSs (gray) that overlap K562 cCREs and SuRE assay peaks. P-values are from Fisher's exact 

test. (C) Aggregation plots of epigenomic signals, DNase I (teal), H3K4me3 (red), H3K27ac 

(yellow), and Pol II (blue), at K562 RAMPAGE-verified TSSs (colors) and matched GENCODE-

annotated TSSs across a ± 2kb window centered on the summits and TSS, respectively. (D) 

Nested violin boxplots showing the number of PacBio 5' read ends that overlap K562 

RAMPAGE-verified TSSs (purple) and matched GENCODE-annotated TSSs (gray). P-value is 

from a Wilcoxon rank sum test.  (E) Genome browser view of INPP1 locus in K562. RAMPAGE-

verified TSS, ZH38T0029211, is linked to the INPP1 gene by paired-end RAMPAGE reads 

(purple) whereas the GENCODE-annotated TSSs are not supported by RAMPAGE reads. 

PacBio reads (green) also support ZH38T0029211 as a verified TSS of INPP1 and epigenomic 

signals, DNase I (teal), H3K4me3 (red), and H3K27ac (yellow), support promoter activity at 

ZH38T0029211 and not at the annotated GENCODE TSSs. RAMPAGE rPeaks with RPM > 2 in 

K562 are shown in purple while those with RPM ≤ 2 are shown in gray. (F) Nested violin 

boxplots of average phastCons conservation scores across RAMPAGE-verified TSSs (purple) 

and matched GENCODE-annotated TSSs (gray). P-value is from a Wilcoxon rank sum test. 

 

Figure 5. Disease-associated SNPs are linked with new candidate genes using the RAMPAGE 

rPeak catalog. (A) Genome browser view of the CYHR1-PPP1R16A locus. Rs2620666 is in 

high LD (shown as r2 values) with GWAS SNPs rs13251458 and rs750472, and overlaps 

RAMPAGE rPeak ZH38T0048822 (dashed box). RAMPAGE rPeaks with RPM > 2 in neural 

cells are shown in purple while those with RPM ≤ 2 are shown in gray; RAMPAGE signal is 

shown in purple. Supporting epigenomic signals from neural cells, H3K4me and H3K27ac, are 

shown in red and yellow, respectively. The region shaded in gray is magnified in B. (B) Zoomed-
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in genome browser view (gray highlight in A) displaying RAMPAGE reads (purple) and PacBio 

reads (green) supporting RAMPAGE peak ZH38T0048822 (dashed box) which is a verified 

unannotated TSS of PPP1R16A and overlaps GWAS SNP rs2620666. RAMPAGE peaks are 

colored as in A and a magnified image of ZH38T0048822 is shown in a larger dashed box with 

white background. (C) Genome browser view of the KCNH7 locus. Rs10930089 is in high LD 

with GWAS SNPs rs6759626 and rs9287826 and overlaps RAMPAGE rPeak ZH38T0028803 

(dashed box). RAMPAGE peaks are colored as described in A for cardiac muscle and SK-N-DZ 

cells. Supporting epigenomic signals from cardiac muscle cells and SK-N-DZ are shown with 

DNase I in teal and H3K27ac in yellow. CHi-C links for cardiac cells are shown in black. The 

region shaded in gray is magnified in D. (D) Zoomed-in genome browser view (gray highlight in 

C) displaying RAMPAGE reads (purple) from cardiac muscle and SK-N-DZ cells supporting 

RAMPAGE peak ZH38T0028803 (in dashed box) which overlaps two transcripts of the lncBook 

lncRNA HSALNG0020057 and GWAS SNP rs10930089. RAMPAGE peaks shown in purple 

have RPM > 2 in both cardiac muscle and SK-N-DZ cells. 
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